241 research outputs found

    TNF-α blockade is ineffective in animal models of established polycystic kidney disease

    Get PDF
    BACKGROUND: Given the large medical burden of polycystic kidney disease (PKD) and recent clinical trial failures, there is a need for novel, safe and effective treatments for the disorder. METHODS: In PCK rat and PKD2((ws25/w183)) mouse models, entanercept was administered once every three days at 5 or 10 mg/kg, once daily. Mozavaptan was administered as a pilot control, provided continuously via milled chow at 0.1%. Animals were assessed for measures of pharmacodynamic response, and improvements in measures of polycystic kidney disease. RESULTS: Entanercept treatment modulated inflammatory markers, but provided limited therapeutic benefit in multiple animal models of established polycystic kidney disease. Kidney weight, cyst burden and renal function markers remained unchanged following administration of etanercept at various dose levels and multiple treatment durations. CONCLUSIONS: While it remains possible that TNF-α inhibition may be effective in truly preventative settings, our observations suggest this pathway is less likely to exhibit therapeutic or disease-modifying efficacy following the standard clinical diagnosis of disease

    Alien Registration- Roix, Phoebe C. (Presque Isle, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/33535/thumbnail.jp

    Alien Registration- Roix, Myrtle O. (Presque Isle, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/33534/thumbnail.jp

    Alien Registration- Roix, Cassie V. (Presque Isle, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/33533/thumbnail.jp

    The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing

    Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited

    Get PDF
    BACKGROUND: Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia) and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL), considers the spatial proximity of loci in interphase nuclei (static "contact first" model). The second model is based on the dynamics of double strand break ends during repair processes (dynamic "breakage first" model). Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4) and a less frequent partner gene (ENL), should elucidate the MLL translocation mechanism. METHODS: Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. RESULTS: In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value < 0.0001). According to the static "contact first" model of the translocation mechanism, a minimal distance between loci would indicate a greater probability of the occurrence of t(11;19)(q23;p13.3) compared to t(4;11)(q21;q23). However this is in contradiction to the epidemiology of 11q23 translocation. CONCLUSION: The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static "contact first" model of translocation. The recently proposed dynamic "breakage first" model offers an attractive alternative explanation

    High-order chromatin architecture determines the landscape of chromosomal alterations in cancer

    Get PDF
    The rapid growth of cancer genome structural information provides an opportunity for a better understanding of the mutational mechanisms of genomic alterations in cancer and the forces of selection that act upon them. Here we test the evidence for two major forces, spatial chromosome structure and purifying (or negative) selection, that shape the landscape of somatic copy-number alterations (SCNAs) in cancer1. Using a maximum likelihood framework we compare SCNA maps and three-dimensional genome architecture as determined by genome-wide chromosome conformation capture (HiC) and described by the proposed fractal-globule (FG) model2. This analysis provides evidence that the distribution of chromosomal alterations in cancer is spatially related to three-dimensional genomic architecture and additionally suggests that purifying selection as well as positive selection shapes the landscape of SCNAs during somatic evolution of cancer cells
    corecore