34 research outputs found

    Die Farbe des Küstenwasser

    Get PDF

    The Coastal Observing System for Northern and Arctic Seas (COSYNA)

    Get PDF
    The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change. The COSYNA automated observing and modelling system is designed to monitor real-time conditions and provide short-term forecasts, data, and data products to help assess the impact of anthropogenically induced change. Observations are carried out by combining satellite and radar remote sensing with various in situ platforms. Novel sensors, instruments, and algorithms are developed to further improve the understanding of the interdisciplinary interactions between physics, biogeochemistry, and the ecology of coastal seas. New modelling and data assimilation techniques are used to integrate observations and models in a quasi-operational system providing descriptions and forecasts of key hydrographic variables. Data and data products are publicly available free of charge and in real time. They are used by multiple interest groups in science, agencies, politics, industry, and the public

    Simultaneous illumination method: application in a two-channel emission fluorometer with multi-wavelength excitation

    Get PDF
    We developed a new illumination method called the simultaneous illumination method. This method does not require synchronization between light sources and sensor signals, which drastically simplifies the instrumentation. As a proof-of-concept, we applied this method to an oceanographic fluorometer. In principle, using this method, one can easily increase the number of characterized emission wavelengths by mounting optical sensors for as many emission wavelengths as needed. Our fluorometer has two emission-wavelength channels and twelve excitation wavelengths. The aim of this prototype is to demonstrate a viable in situ N-channel emission fluorometer with multiple wavelengths of excitation, which has not been previously realized.othe

    An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiate (OC-CCI)

    Get PDF
    Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea viewingWide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel

    Remote Sensing of Sunlight Induced Phytoplankton Fluorescence

    Full text link

    The OLCI Neural Network Swarm (ONNS): A Bio-Geo-Optical Algorithm for Open Ocean and Coastal Waters

    No full text
    The processing scheme of a novel in-water algorithm for the retrieval of ocean color products from Sentinel-3 OLCI is introduced. The algorithm consists of several blended neural networks that are specialized for 13 different optical water classes. These comprise clearest natural waters but also waters reaching the frontiers of marine optical remote sensing, namely extreme absorbing, or scattering waters. Considered chlorophyll concentrations reach up to 200 mg m−3, non-algae particle concentrations up to 1,500 g m−3, and the absorption coefficient of colored dissolved organic matter at 440 nm is up to 20 m−1. The algorithm generates different concentrations of water constituents, inherent and apparent optical properties, and a color index. In addition, all products are delivered with an uncertainty estimate. A baseline validation of the products is provided for various water types. We conclude that the algorithm is suitable for the remote sensing estimation of water properties and constituents of most natural waters

    Factor Analysis in Ocean Colour Interpretation

    Full text link
    corecore