9 research outputs found

    Single-Polymer Composites (SPCs) : Status and Future Trends

    Get PDF
    Preparation, properties and applications of single-polymer composites (SPCs), representing an emerging family within the polymeric composite materials, have been surveyed. SPCs were classified in respect to their composition (one- and two-constituents), and preforms (non-consolidated and consolidated). SPCs composed of amorphous or semicrystalline matrices and semicrystalline reinforcements were considered. Methods to widen the temperature difference between the matrix- and reinforcement-giving materials of the same polymer (one-constituent) or same polymer type (two-constituent approach) have been introduced and discussed. Special attention was paid to the unsolved questions related to the interface/interphase in SPCs. It was emphasized that the development of SPCs is fuelled by the need of engineering parts in different applications which have low density and “ultimate” recyclability (i.e. reprocessing via remelting). Recent development of SPCs is supported by novel preform preparation, consolidation and production possibilities

    Investigation of Transcrystalline Interphases in Polypropylene/Glass Fiber Composites Using Micromechanical Tests

    Get PDF
    In composites, a strong interphase between the components is essential for mechanical properties. By using a suitable sizing (i.e., surface modification) of the fiber, the interphase may be varied, e.g., by suppressing or promoting heterogeneous nucleation of a thermoplastic matrix. In the latter case, three-dimensional transcrystallized interphases with properties differing from those of the bulk matrix are formed. Polypropylene-glass fiber composites are prepared as single-fiber model composites with (a) sizings either inducing or suppressing a transcrystalline interphase, (b) different amounts of modifier maleic acid anhydride grafted polypropylene, and (c) different molecular weights of the matrix polymer. These are studied in quasi-static or cyclic load tests. Static tests permit insights in the interfacial characteristics such as critical interface energy release rate, adhesion strength and frictional stress. Cyclic tests on these model composites can be used to study the nature of dissipative processes and the damage behavior. Atomic Force Microscopy (AFM) investigations of the fiber fracture surfaces provide supplementary information. The transcrystalline layer can indeed improve the mechanical parameters (a 70–100% increase of strength and a 25 or 125% increase in toughness, depending on the molecular weight (MW) of the matrix polymer at low modifier concentration). However, the effect is partially neutralized by an opposing effect: high nucleation in the bulk in samples with commonly used concentrations of modifier
    corecore