37 research outputs found

    The Methylococcus capsulatus (Bath) Secreted Protein, MopE*, Binds Both Reduced and Oxidized Copper

    Get PDF
    Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (

    Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior

    Get PDF
    Two genome duplications early in the vertebrate lineage expanded gene families, including GluN2 subunits of the NMDA receptor. Diversification between the four mammalian GluN2 proteins occurred primarily at their intracellular C−terminal domains (CTDs). To identify shared ancestral functions and diversified subunit−specific functions, we exchanged the exons encoding the GluN2A (also known as Grin2a) and GluN2B (also known as Grin2b) CTDs in two knock−in mice and analyzed the mice's biochemistry, synaptic physiology, and multiple learned and innate behaviors. The eight behaviors were genetically separated into four groups, including one group comprising three types of learning linked to conserved GluN2A/B regions. In contrast, the remaining five behaviors exhibited subunit−specific regulation. GluN2A/B CTD diversification conferred differential binding to cytoplasmic MAGUK proteins and differential forms of long−term potentiation. These data indicate that vertebrate behavior and synaptic signaling acquired increased complexity from the duplication and diversification of ancestral GluN2 gene

    Girls' disruptive behavior and its relationship to family functioning: A review

    Get PDF
    Although a number of reviews of gender differences in disruptive behavior and parental socialization exist, we extend this literature by addressing the question of differential development among girls and by placing both disruptive behavior and parenting behavior in a developmental framework. Clarifying the heterogeneity of development in girls is important for developing and optimizing gender-specific prevention and treatment programs. In the current review, we describe the unique aspects of the development of disruptive behavior in girls and explore how the gender-specific development of disruptive behavior can be explained by family linked risk and protective processes. Based on this review, we formulate a gender-specific reciprocal model of the influence of social factors on the development of disruptive behavior in girls in order to steer further research and better inform prevention and treatment programs

    A Novel Metagenomic Short-Chain Dehydrogenase/Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans

    Get PDF
    In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies

    CorA is a copper repressible surface-associated copper(I)-binding protein produced in Methylomicrobium album BG8

    Get PDF
    CorA is a copper repressible protein previously identified in the methanotrophic bacterium Methylomicrobium album BG8. In this work, we demonstrate that CorA is located on the cell surface and binds one copper ion per protein molecule, which, based on X-ray Absorption Near Edge Structure analysis, is in the reduced state (Cu(I)). The structure of endogenously expressed CorA was solved using X-ray crystallography. The 1.6 Å three-dimensional structure confirmed the binding of copper and revealed that the copper atom was coordinated in a mononuclear binding site defined by two histidines, one water molecule, and the tryptophan metabolite, kynurenine. This arrangement of the copper-binding site is similar to that of its homologous protein MopE* from Metylococcus capsulatus Bath, confirming the importance of kynurenine for copper binding in these proteins. Our findings show that CorA has an overall fold similar to MopE, including the unique copper(I)-binding site and most of the secondary structure elements. We suggest that CorA plays a role in the M. album BG8 copper acquisition

    Effects of tetrodotoxin and ion replacements on the short-circuit current induced by Escherichiacoli heat stable enterotoxin across small intestine of the gerbil (Gerbillus cheesmani)

    No full text
    The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1) on the basal short-circuit current (Isc in µA cm-2) across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib) and undernourished (50% control food intake for 21 days) gerbil (Gerbillus cheesmani) were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM) and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils

    SDS-PAGE and protein immunoblot analysis of proteins obtained during the fractionation of high- and low-copper grown <i>M. album</i> BG8.

    No full text
    <p>Samples from each fractionation step were collected and comparable amounts were analyzed. a) A 12.5% PA-gel was used and stained with Coomassie Brilliant Blue R-250. a) and b) Lane 1 and 2, whole cells (WC); lane 3 and 4, soluble fraction (S); lane 5 and 6, total membrane fraction (TM); lane 7 and 8, Triton X-100 soluble membrane fraction (enriched inner-membrane fraction, IM); lane 9 and 10, Triton X-100 insoluble fraction (enriched outer membrane fraction, OM). High- (+) and low-copper (−) conditions during growth are indicated below the PA-gel. b) Protein immunoblot of a) using CorB-specific antibody <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0087750#pone.0087750-Karlsen6" target="_blank">[28]</a>. CorA and putatively the pmoA subunit of the <i>M. album</i> BG8 pMMO are indicated with arrowheads. Molecular mass markers are indicated to the left of both a) and b).</p

    The Methylococcus capsulatus (Bath) Secreted Protein, MopE*, Binds Both Reduced and Oxidized Copper

    Get PDF
    Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (A(parallel to) = 20 mT). Immobilized metal affinity chromatography binding studies suggests that residues in the N-terminal part of MopE* are involved in forming binding site(s) for Cu(II) ions. Our results support the hypothesis that MopE plays an important role in copper uptake, possibly making use of both its high (Cu(I) and low Cu(II) affinity properties

    Purification of endogenously expressed CorA.

    No full text
    <p>a) SDS-PAGE analysis of fractions obtained after the (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> precipitation of the CorA-containing NaCl extract (see M&M). A 12.5% PA-gel was used and stained with Coomassie Brilliant Blue R-250. Lane 1, PD10 desalted NaCl extract from the <i>M. album</i> BG8 outer membrane; lane 2, solubilized precipitated material after 50% (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> precipitation of 1); lane 3, The soluble fraction after 50% (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> precipitation of 1). b) A representative chromatogram of the anion exchanger elution profile of the (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-treated NaCl extract. Elution of CorA is indicated with an arrowhead. c) A representative gel filtration chromatogram of pooled CorA-containing fractions obtained in the anion exchanger chromatography. d) SDS-PAGE analysis of pooled fractions containing CorA obtained from the ion exchanger chromatography (lane 1), and the gel filtration (lane 2). CorA and molecular mass markers are indicated.</p
    corecore