14 research outputs found
BRAHMA ATPase of the SWI/SNF Chromatin Remodeling Complex Acts as a Positive Regulator of Gibberellin-Mediated Responses in Arabidopsis
SWI/SNF chromatin remodeling complexes perform a pivotal function in the regulation of eukaryotic gene expression. Arabidopsis (Arabidopsis thaliana) mutants in major SWI/SNF subunits display embryo-lethal or dwarf phenotypes, indicating their critical role in molecular pathways controlling development and growth. As gibberellins (GA) are major positive regulators of plant growth, we wanted to establish whether there is a link between SWI/SNF and GA signaling in Arabidopsis. This study revealed that in brm-1 plants, depleted in SWI/SNF BRAHMA (BRM) ATPase, a number of GA-related phenotypic traits are GA-sensitive and that the loss of BRM results in markedly decreased level of endogenous bioactive GA. Transcriptional profiling of brm-1 and the GA biosynthesis mutant ga1-3, as well as the ga1-3/brm-1 double mutant demonstrated that BRM affects the expression of a large set of GA-responsive genes including genes responsible for GA biosynthesis and signaling. Furthermore, we found that BRM acts as an activator and directly associates with promoters of GA3ox1, a GA biosynthetic gene, and SCL3, implicated in positive regulation of the GA pathway. Many GA-responsive gene expression alterations in the brm-1 mutant are likely due to depleted levels of active GAs. However, the analysis of genetic interactions between BRM and the DELLA GA pathway repressors, revealed that BRM also acts on GA-responsive genes independently of its effect on GA level. Given the central position occupied by SWI/SNF complexes within regulatory networks controlling fundamental biological processes, the identification of diverse functional intersections of BRM with GA-dependent processes in this study suggests a role for SWI/SNF in facilitating crosstalk between GA-mediated regulation and other cellular pathways
SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development
The SWI/SNF ATP-Dependent Chromatin Remodeling Complex in Arabidopsis Responds to Environmental Changes in Temperature-Dependent Manner
SWI/SNF ATP-dependent chromatin remodeling complexes (CRCs) play important roles in the regulation of transcription, cell cycle, DNA replication, repair, and hormone signaling in eukaryotes. The core of SWI/SNF CRCs composed of a SWI2/SNF2 type ATPase, a SNF5 and two of SWI3 subunits is sufficient for execution of nucleosome remodeling in vitro. The Arabidopsis genome encodes four SWI2/SNF2 ATPases, four SWI3, a single SNF5 and two SWP73 subunits. Genes of the core SWI/SNF components have critical but not fully overlapping roles during plant growth, embryogenesis, and sporophyte development. Here we show that the Arabidopsis swi3c mutant exhibits a phenotypic reversion when grown at lower temperature resulting in partial restoration of its embryo, root development and fertility defects. Our data indicates that the swi3c mutation alters the expression of several genes engaged in low temperature responses. The location of SWI3C-containing SWI/SNF CRCs on the ICE1, MYB15 and CBF1 target genes depends on the temperature conditions, and the swi3c mutation thus also influences the transcription of several cold-responsive (COR) genes. These findings, together with genetic analysis of swi3c/ice1 double mutant and enhanced freezing tolerance of swi3c plants illustrate that SWI/SNF CRCs contribute to fine-tuning of plant growth responses to different temperature regimes.</jats:p
The Immunochemistry of Peptidoglycan. Separation and Characterization of Antibodies to the Glycan and to the Peptide Subunit
A Non-Canonical Function of Arabidopsis ERECTA Proteins in Gibberellin Signaling
AbstractThe Arabidopsis ERECTA family (ERf) of leucine-rich repeat receptor-like kinases (LRR-RLKs), comprising ERECTA (ER), ERECTA-LIKE 1 (ERL1) and ERECTA-LIKE 2 (ERL2), control epidermal patterning, inflorescence architecture, stomata development, and hormonal signaling. Here we show that the er/erl1/erl2 triple mutant exhibits impaired gibberellin (GA) biosynthesis and perception alongside broad transcriptional changes. ERf proteins interact in the nucleus, via kinase domains, with the SWI3B subunit of the SWI/SNF chromatin remodeling complex (CRCs). The er/erl1/erl2 triple mutant exhibits reduced SWI3B protein level and affected nucleosomal chromatin structure. The ER kinase phosphorylates SWI3B in vitro, and the inactivation of all ERf proteins leads to the decreased phosphorylation of SWI3B protein in vivo. Correlation between DELLA overaccumulation and SWI3B proteasomal degradation together with the physical interaction of SWI3B with DELLA proteins explain the lack of RGA accumulation in the GA- and SWI3B-deficient erf mutant plants. Co-localization of ER and SWI3B on GID1 (GIBBERELLIN INSENSITIVE DWARF 1) DELLA target gene promoter regions and abolished SWI3B binding to GID1 promoters in er/erl1/erl2 plants supports the conclusion that ERf-SWI/SNF CRC interaction is important for transcriptional control of GA receptors. Thus, the involvement of ERf proteins in transcriptional control of gene expression, and observed similar features for human HER2 (Epidermal Growth Family Receptor-member), indicate an exciting target for further studies of evolutionarily conserved non-canonical functions of eukaryotic membrane receptors.ONE SENTENCE SUMMARYERECTA leucine-rich receptor-like kinase and SWI3B subunit of SWI/SNF chromatin remodeling complex cooperate in direct transcriptional control of GID1 genes in Arabidopsis.</jats:sec
A non-canonical function of Arabidopsis ERECTA proteins and a role of the SWI3B subunit of the SWI/SNF chromatin remodeling complex in gibberellin signaling
The Arabidopsis ERECTA family (ERf) of leucine-rich repeat receptor-like kinases (LRR-RLKs) comprising
ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERECTA-LIKE 2 (ERL2) controls epidermal patterning, inflorescence
architecture, and stomata development and patterning. These proteins are reported to be plasma membrane associated. Here we show that the er/erl1/erl2 mutant exhibits impaired gibberellin (GA) biosynthesis
and perception alongside broad transcriptional changes. The ERf kinase domains were found to localize to
the nucleus where they interact with the SWI3B subunit of the SWI/SNF chromatin remodeling complex
(CRCs). The er/erl1/erl2 mutant exhibits reduced SWI3B protein level and affected nucleosomal chromatin
structure. Similar to swi3c and brm plants with inactivated subunits of SWI/SNF CRCs, it also does not
accumulate DELLA RGA and GAI proteins. The ER kinase phosphorylates SWI3B in vitro, and the inactiva�tion of all ERf proteins leads to the decreased phosphorylation of SWI3B protein in vivo. The identified cor�relation between DELLA overaccumulation and SWI3B proteasomal degradation, and the physical
interaction of SWI3B with DELLA proteins indicate an important role of SWI3B-containing SWI/SNF CRCs in
gibberellin signaling. Co-localization of ER and SWI3B on GID1 (GIBBERELLIN INSENSITIVE DWARF 1)
DELLA target gene promoter regions and abolished SWI3B binding to GID1 promoters in er/erl1/erl2 plants
supports the conclusion that ERf-SWI/SNF CRC interaction is important for transcriptional control of GA
receptors. Thus, the involvement of ERf proteins in the transcriptional control of gene expression, and
observed similar features for human HER2 (epidermal growth family receptor member), indicate an exciting
target for further studies of evolutionarily conserved non-canonical functions of eukaryotic membrane
receptors
BRAHMA ATPase of the SWI/SNF Chromatin Remodeling Complex Acts as a Positive Regulator of Gibberellin-Mediated Responses in Arabidopsis
SWI/SNF chromatin remodeling complexes perform a pivotal function in the regulation of eukaryotic gene expression. Arabidopsis (Arabidopsis thaliana) mutants in major SWI/SNF subunits display embryo-lethal or dwarf phenotypes, indicating their critical role in molecular pathways controlling development and growth. As gibberellins (GA) are major positive regulators of plant growth, we wanted to establish whether there is a link between SWI/SNF and GA signaling in Arabidopsis. This study revealed that in brm-1 plants, depleted in SWI/SNF BRAHMA (BRM) ATPase, a number of GA-related phenotypic traits are GA-sensitive and that the loss of BRM results in markedly decreased level of endogenous bioactive GA. Transcriptional profiling of brm-1 and the GA biosynthesis mutant ga1-3, as well as the ga1-3/brm-1 double mutant demonstrated that BRM affects the expression of a large set of GA-responsive genes including genes responsible for GA biosynthesis and signaling. Furthermore, we found that BRM acts as an activator and directly associates with promoters of GA3ox1, a GA biosynthetic gene, and SCL3, implicated in positive regulation of the GA pathway. Many GA-responsive gene expression alterations in the brm-1 mutant are likely due to depleted levels of active GAs. However, the analysis of genetic interactions between BRM and the DELLA GA pathway repressors, revealed that BRM also acts on GA-responsive genes independently of its effect on GA level. Given the central position occupied by SWI/SNF complexes within regulatory networks controlling fundamental biological processes, the identification of diverse functional intersections of BRM with GA-dependent processes in this study suggests a role for SWI/SNF in facilitating crosstalk between GA-mediated regulation and other cellular pathways
