1,252 research outputs found

    Standardization of activated sludge for biodegradation tests

    Get PDF
    Activated sludges are an inoculum source commonly used in biodegradation studies, as wastewater treatment facilities constitute an entry point to the environment for many chemicals. In this paper, the main issues relating to the use of activated sludge in biodegradability tests are presented. Special attention is also devoted to discussing the factors affecting both the activity of the microbial communities and the test results. After a short survey of the state of the art of microbiology of activated sludge, the paper focuses on the methods used to reduce the variations in the diversity, quality and quantity of these communities. Finally, use of surrogates as reference materials in biodegradability tests is discussed

    X-ray diffraction as a tool for the determination of the structure of double-walled carbon nanotube batches

    Get PDF
    The average structure of double-walled carbon nanotube DWCNT samples can be determined by x-ray diffraction XRD. We present a formalism that allows XRD patterns of DWCNTs to be simulated and we give researchers the tools needed to perform these calculations themselves. Simulations of XRD patterns within this formalism are compared to experimental data obtained on two different DWCNT samples, produced by chemical vapor deposition or by peapod conversion i.e., high-temperature peapod annealing. For each sample, we are able to determine structural aspects such as the number of walls, the diameter distribution of inner and outer tubes, the intertube spacing, and the bundled structure

    Ab initio lattice dynamics simulations and inelastic neutron scattering spectra for studying phonons in BaFe2As2: Effect of structural phase transition, structural relaxation and magnetic ordering

    Get PDF
    We have performed extensive ab initio calculations to investigate phonon dynamics and their possible role in superconductivity in BaFe2As2 and related systems. The calculations are compared to inelastic neutron scattering data that offer improved resolution over published data [Mittal et al., PRB 78 104514 (2008)], in particular at low frequencies. Effects of structural phase transition and full/partial structural relaxation, with and without magnetic ordering, on the calculated vibrational density of states are reported. Phonons are best reproduced using either the relaxed magnetic structures or the experimental cell. Several phonon branches are affected by the subtle structural changes associated with the transition from the tetragonal to the orthorhombic phase. Effects of phonon induced distortions on the electronic and spin structure have been investigated. It is found that for some vibrational modes, there is a significant change of the electronic distribution and spin populations around the Fermi level. A peak at 20 meV in the experimental data falls into the pseudo-gap region of the calculation. This was also the case reported in our recent work combined with an empirical parametric calculation [Mittal et al., PRB 78 104514 (2008)]. The combined evidence for the coupling of electronic and spin degrees of freedom with phonons is relevant to the current interest in superconductivity in BaFe2As2 and related systems

    Haydeeite: a spin-1/2 kagome ferromagnet

    Full text link
    The mineral haydeeite, alpha-MgCu3(OD)6Cl2, is a S=1/2 kagome ferromagnet that displays long-range magnetic order below TC=4.2 K with a strongly reduced moment. Our inelastic neutron scattering data show clear spin-wave excitations that are well described by a Heisenberg Hamiltonian with ferromagnetic nearest-neighbor exchange J1=-38 K and antiferromagnetic exchange Jd=+11 K across the hexagons of the kagome lattice. These values place haydeeite very close to the quantum phase transition between ferromagnetic order and non-coplanar twelve-sublattice cuboc2 antiferromagnetic order. Diffuse dynamic short-range ferromagnetic correlations observed above TC persist well into the ferromagnetically ordered phase with a behavior distinct from critical scattering

    On the diffraction pattern of C60 peapods

    Full text link
    We present detailed calculations of the diffraction pattern of a powder of bundles of C60_{60} peapods. The influence of all pertinent structural parameters of the bundles on the diffraction diagram is discussed, which should lead to a better interpretation of X-ray and neutron diffraction diagrams. We illustrate our formalism for X-ray scattering experiments performed on peapod samples synthesized from 2 different technics, which present different structural parameters. We propose and test different criteria to solve the difficult problem of the filling rate determination.Comment: Sumitted 19 May 200
    corecore