100 research outputs found

    Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    Get PDF
    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. It is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulatio

    Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease.

    Get PDF
    UNLABELLED: Nonalcoholic fatty liver disease (NAFLD) can progress from simple steatosis (i.e., nonalcoholic fatty liver [NAFL]) to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Currently, the driver for this progression is not fully understood; in particular, it is not known how NAFLD and its early progression affects the distribution of lipids in the liver, producing lipotoxicity and inflammation. In this study, we used dietary and genetic mouse models of NAFL and NASH and translated the results to humans by correlating the spatial distribution of lipids in liver tissue with disease progression using advanced mass spectrometry imaging technology. We identified several lipids with distinct zonal distributions in control and NAFL samples and observed partial to complete loss of lipid zonation in NASH. In addition, we found increased hepatic expression of genes associated with remodeling the phospholipid membrane, release of arachidonic acid (AA) from the membrane, and production of eicosanoid species that promote inflammation and cell injury. The results of our immunohistochemistry analyses suggest that the zonal location of remodeling enzyme LPCAT2 plays a role in the change in spatial distribution for AA-containing lipids. This results in a cycle of AA-enrichment in pericentral hepatocytes, membrane release of AA, and generation of proinflammatory eicosanoids and may account for increased oxidative damage in pericentral regions in NASH. CONCLUSION: NAFLD is associated not only with lipid enrichment, but also with zonal changes of specific lipids and their associated metabolic pathways. This may play a role in the heterogeneous development of NAFLD. (Hepatology 2017;65:1165-1180).Medical Research Council (MRC). Horizon 2020 Framework Program of the European Union

    Mass spectrometry imaging for plant biology: a review

    Get PDF

    Chemie Lexikon

    No full text
    ill.;1032 hal.; 30 c

    Analysis of cyclotides in viola ignobilis by nano liquid chromatography fourier transform mass spectrometry

    No full text
    Cyclotides are macrocyclic knotted peptides originating from plants. They are extremely stable and have a range of bioactivities including anti-HIV and insecticidal activity. Given the stability of the cyclotide framework, there is interest in using these peptides as scaffolds in drug design. In the current study, we have shown that nano-LC Fourier transform mass spectrometry (FTMS) is an effective method of analyzing cyclotides in plants. In addition, we have used this technique to find cyclotides in a novel species, Viola ignobilis (Violaceae plant family), which was collected from the East Azerbaijan province of Iran. Varv peptide A, cycloviolacin B2, and cycloviolacin O8 were found in this species. This study provides a novel method for directly analyzing cyclotide sequences without enzymatic digestion and further information regarding the distribution of cyclotides in plant species

    High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples.

    No full text
    We present the first analytical approach to demonstrate the in situ imaging of metabolites from formalin-fixed, paraffin-embedded (FFPE) human tissue samples. Using high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR MSI), we conducted a proof-of-principle experiment comparing metabolite measurements from FFPE and fresh frozen tissue sections, and found an overlap of 72% amongst 1700 m/z species. In particular, we observed conservation of biomedically relevant information at the metabolite level in FFPE tissues. In biomedical applications, we analysed tissues from 350 different cancer patients and were able to discriminate between normal and tumour tissues, and different tumours from the same organ, and found an independent prognostic factor for patient survival. This study demonstrates the ability to measure metabolites in FFPE tissues using MALDI-FT-ICR MSI, which can then be assigned to histology and clinical parameters. Our approach is a major technical, histochemical, and clinicopathological advance that highlights the potential for investigating diseases in archived FFPE tissues
    corecore