5,223 research outputs found
Does biological relatedness affect child survival?
Objective: We studied child survival in Rakai, Uganda where many children are fostered out or orphaned. Methods: Biological relatedness is measured as the average of the Wright’s coefficients between each household member and the child. Instrumental variables for fostering include proportion of adult males in household, age and gender of household head. Control variables include SES, religion, polygyny, household size, child age, child birth size, and child HIV status. Results: Presence of both parents in the household increased the odds of survival by 28%. After controlling for the endogeneity of child placement decisions in a multivariate model we found that lower biological relatedness of a child was associated with statistically significant reductions in child survival. The effects of biological relatedness on child survival tend to be stronger for both HIV- and HIV+ children of HIV+ mothers. Conclusions: Reductions in the numbers of close relatives caring for children of HIV+ mothers reduce child survival.AIDS/HIV, child survival, fostering, orphans, Uganda
Examining Dense Data Usage near the Regions with Severe Storms in All-Sky Microwave Radiance Data Assimilation and Impacts on GEOS Hurricane Analyses
Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit (AMSU-A), Microwave Humidity Sounder (MHS), and GMI on GEOS-5 analyses and forecasts of various hurricanes
All-Sky Microwave Imager Data Assimilation at NASA GMAO
Efforts in all-sky satellite data assimilation at the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center have been focused on the development of GSI configurations to assimilate all-sky data from microwave imagers such as the GPM Microwave Imager (GMI) and Global Change Observation Mission-Water (GCOM-W) Advanced Microwave Scanning Radiometer 2 (AMSR-2). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be relatively transparent to atmospheric gases and thin ice clouds, and highly sensitive to precipitation. Therefore, GMAOs all-sky data assimilation efforts are primarily focused on utilizing these data in precipitating regions. The all-sky framework being tested at GMAO employs the GSI in a hybrid 4D-EnVar configuration of the Goddard Earth Observing System (GEOS) data assimilation system, which will be included in the next formal update of GEOS. This article provides an overview of the development of all-sky radiance assimilation in GEOS, including some performance metrics. In addition, various projects underway at GMAO designed to enhance the all-sky implementation will be introduced
Assessment of patients after coronary artery bypass grafting by dobutamine stress echocardiography
Dobutamine stress echocardiography is an accurate method for the diagnosis and localization of vascular compromise in patients evaluated after coronary artery bypass graft surgery. The test provides useful data for selection of patients for whom coronary angiography may be indicated
Evaluation by quantitative 99m-technetium MIBI SPECT and echocardiography of myocardial perfusion and wall motion abnormalities in patients with dobutamine-induced ST-segment elevation
ST-segment elevation during exercise testing has been attributed to myocardial ischemia and wall motion abnormalities (WMA). However, the functional significance of ST-segment elevation during dobutamine stress testing (DST) has not been evaluated in patients referred for diagnostic evaluation of myocardial ischemia. DST (up to 40 μg/kg/min) with simultaneous echocardiography and technetium-99m sestamibi single-photon emission computed tomography (SPECT) was performed in 229 consecutive patients with suspected myocardial ischemia who were unable to perform an adequate exercise test; 127 (55%) had a previous acute myocardial infarction (AMI). ST elevation was defined as ≥ 1 mm new or additional J point elevations with a horizontal or upsloping ST segment lasting 80 ms. Reversible perfusion defects on SPECT and new or worsening WMA during stress on echocardiography were considered diagnostic of ischemia. ST elevation occurred in 40 patients (17%) during the test; 34 of them (85%) had previous AMI. All patients with ST-segment elevation had abnormal scintigrams (fixed or reversible defects, or both) and abnormal wall motion (fixed or transient defects, or both) at peak s
Direct evidence for heme-assisted solid-state electronic conduction in multi-heme c-type cytochromes
Multi-heme cytochrome c (CytC) proteins are key for transferring electrons out of cells, to enable intracellular oxidation to proceed, also in the absence of O2. In these proteins most of the hemes are arranged in a linear array suggesting a facile path for electronic conduction. To test this, we studied solvent free electron transport across two multi-heme CytC-type: MtrF (deca-heme CytC) and STC (tetra-heme CytC). Transport is measured across monolayers of these proteins in solid state configuration between Au electrodes. Both proteins showed 1,000x higher conductance than single heme, or heme-free proteins, but similar to monolayers of conjugated organics. Conductances are found to be temperature-independent (320-80K), suggesting tunneling as the transport mechanism based on present experimental data. This mechanism is consistent with modelling the I-V curves, results of which could be interpreted by having protein-electrode coupling as rate limiting, rather than transport within the proteins
- …
