143 research outputs found

    Manufacture of High-Performance Tidal Turbine Blades Using Advanced Composite Manufacturing Technologies

    Get PDF
    After wind and solar energy, tidal energy presents the most prominent opportunity for generating energy from renewable sources. However, due to the harsh environment that tidal turbines are deployed in, a number of design and manufacture challenges are presented to engineers. As a consequence of the harsh environment, the loadings on the turbine blades are much greater than that on wind turbine blades and, therefore, require advanced solutions to be able to survive in this environment. In order to avoid issues with corrosion, tidal turbine blades are mainly manufactured from fibre reinforced polymer composite material. As a result, the main design and manufacture challenges are related to the main structural aspects of the blade, which are the spar and root, and the connection between the blade and the turbine hub. Therefore, in this paper, a range of advanced manufacturing technologies for producing a 1 MW tidal turbine blade are developed. The main novelty in this study comes with the challenges that are overcome due to the size of the blade, resulting in thickness composite sections (> 130 mm in places), the fast changes in geometry over a short length that isn’t the case for wind blades and the required durability of the material in the marine environment. These advances aim to increase the likelihood of survival of tidal turbine blades in operation for a design life of 20 + years

    On the MIMO Capacity with Multiple Linear Transmit Covariance Constraints

    Get PDF
    This paper presents an efficient approach to computing the capacity of multiple-input multiple-output (MIMO) channels under multiple linear transmit covariance constraints (LTCCs). LTCCs are general enough to include several special types of power constraints as special cases such as the sum power constraint (SPC), per-antenna power constraint (PAPC), or a combination thereof. Despite its importance and generality, most of the existing literature considers either SPC or PAPC independently. Efficient solutions to the computation of the MIMO capacity with a combination of SPC and PAPC have been recently reported, but were only dedicated to multipleinput single-output (MISO) systems. For the general case of LTCCs, we propose a low-complexity semi-closed-form approach tothecomputationoftheMIMOcapacity.Specifically,amodified minimax duality is first invoked to transform the considered problem in the broadcast channel into an equivalent minimax problem in the dual multiple access channel. Then alternating optimization and concave-convex procedure are utilized to derive water-filling-based algorithms to find a saddle point of the minimax problem. This is different from the state-of-the-art solutions to the considered problem, which are based on interiorpoint or subgradient methods. Analytical and numerical results are provided to demonstrate the effectiveness of the proposed low-complexity solution under various MIMO scenarios

    A pilot study demonstrating the altered gut microbiota functionality in stable adults with Cystic Fibrosis

    Get PDF
    peer-reviewedCystic Fibrosis (CF) and its treatment result in an altered gut microbiota composition compared to non-CF controls. However, the impact of this on gut microbiota functionality has not been extensively characterised. Our aim was to conduct a proof-of-principle study to investigate if measurable changes in gut microbiota functionality occur in adult CF patients compared to controls. Metagenomic DNA was extracted from faecal samples from six CF patients and six non-CF controls and shotgun metagenomic sequencing was performed on the MiSeq platform. Metabolomic analysis using gas chromatography-mass spectrometry was conducted on faecal water. The gut microbiota of the CF group was significantly different compared to the non-CF controls, with significantly increased Firmicutes and decreased Bacteroidetes. Functionality was altered, with higher pathway abundances and gene families involved in lipid (e.g. PWY 6284 unsaturated fatty acid biosynthesis (p = 0.016)) and xenobiotic metabolism (e.g. PWY-5430 meta-cleavage pathway of aromatic compounds (p = 0.004)) in CF patients compared to the controls. Significant differences in metabolites occurred between the two groups. This proof-of-principle study demonstrates that measurable changes in gut microbiota functionality occur in CF patients compared to controls. Larger studies are thus needed to interrogate this further

    Go-Smart:Open-Ended, Web-Based Modelling of Minimally Invasive Cancer Treatments via a Clinical Domain Approach

    Get PDF
    Clinicians benefit from online treatment planning systems, through off-site accessibility, data sharing and professional interaction. As well as enhancing clinical value, incorporation of simulation tools affords innovative avenues for open-ended, multi-disciplinary research collaboration. An extensible system for clinicians, technicians, manufacturers and researchers to build on a simulation framework is presented. This is achieved using a domain model that relates entities from theoretical, engineering and clinical domains, allowing algorithmic generation of simulation configuration for several open source solvers. The platform is applied to Minimally Invasive Cancer Treatments (MICTs), allowing interventional radiologists to upload patient data, segment patient images and validate simulated treatments of radiofrequency ablation, cryoablation, microwave ablation and irreversible electroporation. A traditional radiology software layout is provided in-browser for clinical use, with simple, guided simulation, primarily for training and research. Developers and manufacturers access a web-based system to manage their own simulation components (equipment, numerical models and clinical protocols) and related parameters. This system is tested by interventional radiologists at four centres, using pseudonymized patient data, as part of the Go-Smart Project (http://gosmart-project.eu). The simulation technology is released as a set of open source components http://github.com/go-smart

    RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors

    Get PDF
    The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Co-production - BSc Mental Health Nursing

    Get PDF
    The Trinity Health and Education Conference 2022 (THEConf2022), Virtual Event, 9 March 2022In 2020, UCD School of Nursing, Midwifery and Health Systems faculty and students, representatives of Arches Recovery Education, HSE Community Healthcare East and St. John of God Community Services were awarded HRB – PPI Ignite funding. This funding was used to co-produce the module NMHS30610, Acute Mental Health Nursing, to extensively re-develop the module design, delivery, teaching and assessment methods employed in the module and to build co-production capacity within the School. Ethical approval was granted by UCD Human Research Ethics Committee.Health Research Boar

    Realizing General Education: Reconsidering Conceptions and Renewing Practice

    Get PDF
    General Education is widely touted as an enduring distinctive of higher education in the United States (Association of American Colleges and Universities, [11]; Boyer, [37]; Gaston, [86]; Zakaria, [202]). The notion that undergraduate education demands wide‐ranging knowledge is a hallmark of U.S. college graduates that international educators emulate (Blumenstyk, [25]; Rhodes, [158]; Tsui, [181]). The veracity of this distinct educational vision is supported by the fact that approximately one third of the typically 120 credits required for the bachelor\u27s degree in the United States consist of general education courses (Lattuca & Stark, [120]). Realizing a general education has been understood to be central to achieving higher education\u27s larger purposes, making it a particularly salient concern

    Digital health and mobile health: a bibliometric analysis of the 100 most cited papers and their contributing authors

    Get PDF
    Aim: This study aimed to identify and analyze the top 100 most cited digital health and mobile health (m-health) publications. It could aid researchers in the identification of promising new research avenues, additionally supporting the establishment of international scientific collaboration between interdisciplinary research groups with demonstrated achievements in the area of interest. Methods: On 30th August, 2023, the Web of Science Core Collection (WOSCC) electronic database was queried to identify the top 100 most cited digital health papers with a comprehensive search string. From the initial search, 106 papers were identified. After screening for relevance, six papers were excluded, resulting in the final list of the top 100 papers. The basic bibliographic data was directly extracted from WOSCC using its “Analyze” and “Create Citation Report” functions. The complete records of the top 100 papers were downloaded and imported into a bibliometric software called VOSviewer (version 1.6.19) to generate an author keyword map and author collaboration map. Results: The top 100 papers on digital health received a total of 49,653 citations. Over half of them (n = 55) were published during 2013–2017. Among these 100 papers, 59 were original articles, 36 were reviews, 4 were editorial materials, and 1 was a proceeding paper. All papers were written in English. The University of London and the University of California system were the most represented affiliations. The USA and the UK were the most represented countries. The Journal of Medical Internet Research was the most represented journal. Several diseases and health conditions were identified as a focus of these works, including anxiety, depression, diabetes mellitus, cardiovascular diseases, and coronavirus disease 2019 (COVID-19). Conclusions: The findings underscore key areas of focus in the field and prominent contributors, providing a roadmap for future research in digital and m-health

    The Physics of the B Factories

    Get PDF
    corecore