2,220 research outputs found

    New distributed offline processing scheme at Belle

    Full text link
    The offline processing of the data collected by the Belle detector has been recently upgraded to cope with the excellent performance of the KEKB accelerator. The 127/fb of data (120 TB on tape) collected between autumn 2003 and summer 2004 has been processed in 2 months, thanks to the high speed and stability of the new, distributed processing scheme. We present here this new processing scheme and its performance.Comment: 4 pages, 8 figures, uses CHEP2004.cl

    Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors

    Get PDF
    The gravitational wave resonant detectors can be used as detectors of quark nuggets, like nuclearites (nuclear matter with a strange quark). This search has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower detectors: signals in the bar due to showers are continuously detected and used to characterize the antenna performances. The bar excitation mechanism is based on the so called thermo-acoustic effect, studied on dedicated experiments that use particle beams. This mechanism predicts that vibrations of bars are induced by the heat deposited in the bar from the particle. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. We will show the results of ten years of data from NAUTILUS (2003-2012) and 7 years from EXPLORER (2003-2009). The experimental limits we obtain are of interest because, for nuclearites of mass less than 10410^{-4} grams, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de Janeiro 201

    Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS

    Full text link
    We performed a search for short gravitational wave bursts using about 3 years of data of the resonant bar detectors Nautilus and Explorer. Two types of analysis were performed: a search for coincidences with a low background of accidentals (0.1 over the entire period), and the calculation of upper limits on the rate of gravitational wave bursts. Here we give a detailed account of the methodology and we report the results: a null search for coincident events and an upper limit that improves over all previous limits from resonant antennas, and is competitive, in the range h_rss ~1E-19, with limits from interferometric detectors. Some new methodological features are introduced that have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure

    Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites

    Get PDF
    Many experiments have searched for supersymmetric WIMP dark matter, with null results. This may suggest to look for more exotic possibilities, for example compact ultra-dense quark nuggets, widely discussed in literature with several different names. Nuclearites are an example of candidate compact objects with atomic size cross section. After a short discussion on nuclearites, the result of a nuclearite search with the gravitational wave bar detectors Nautilus and Explorer is reported. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. The experimental limits we obtain are of interest because, for nuclearites of mass less than 10510^{-5} g, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates. Particles with gravitational only interactions (newtorites) are another example. In this case the sensitivity is quite poor and a short discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1

    Effect of cosmic rays on the resonant gravitational wave detector NAUTILUS at temperature T=1.5 K

    Get PDF
    The interaction between cosmic rays and the gravitational wave bar detector NAUTILUS is experimentally studied with the aluminum bar at temperature of T=1.5 K. The results are compared with those obtained in the previous runs when the bar was at T=0.14 K. The results of the run at T = 1.5 K are in agreement with the thermo-acoustic model; no large signals at unexpected rate are noticed, unlike the data taken in the run at T = 0.14 K. The observations suggest a larger efficiency in the mechanism of conversion of the particle energy into vibrational mode energy when the aluminum bar is in the superconductive status.Comment: 7 pages, 3 figures, 2 tables. Accepted by Physics Letters

    Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001

    Get PDF
    We report the result from a search for bursts of gravitational waves using data collected by the cryogenic resonant detectors EXPLORER and NAUTILUS during the year 2001, for a total measuring time of 90 days. With these data we repeated the coincidence search performed on the 1998 data (which showed a small coincidence excess) applying data analysis algorithms based on known physical characteristics of the detectors. With the 2001 data a new interesting coincidence excess is found when the detectors are favorably oriented with respect to the Galactic Disk

    Search for Periodic Gravitational Wave Sources with the Explorer Detector

    Get PDF
    We have developped a procedure for the search of periodic signals in the data of gravitational wave detectors. We report here the analysis of one year of data from the resonant detector Explorer, searching for pulsars located in the Galactic Center (GC). No signals with amplitude greater than hˉ=2.9 1024\bar{h}= 2.9~10^{-24}, in the range 921.32-921.38 Hz, were observed using data collected over a time period of 95.7 days, for a source located at α=17.70±0.01\alpha=17.70 \pm 0.01 hours and δ=29.00±0.05\delta=-29.00 \pm 0.05 degrees. Our procedure can be extended for any assumed position in the sky and for a more general all-sky search, even with a frequency correction at the source due to the spin-down and Doppler effects.Comment: One zipped file (Latex+eps figures). 33 pages, 14 figures. This and related material also at http://grwav3.roma1.infn.it

    Initial operation of the International Gravitational Event Collaboration

    Full text link
    The International Gravitational Event Collaboration, IGEC, is a coordinated effort by research groups operating gravitational wave detectors working towards the detection of millisecond bursts of gravitational waves. Here we report on the current IGEC resonant bar observatory, its data analysis procedures, the main properties of the first exchanged data set. Even though the available data set is not complete, in the years 1997 and 1998 up to four detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted to the International Journal of Modern Physic

    All-sky search of NAUTILUS data

    Full text link
    A search for periodic gravitational-wave signals from isolated neutron stars in the NAUTILUS detector data is presented. We have analyzed half a year of data over the frequency band Hz,thespindownrange Hz, the spindown range Hz/s and over the entire sky. We have divided the data into 2 day stretches and we have analyzed each stretch coherently using matched filtering. We have imposed a low threshold for the optimal detection statistic to obtain a set of candidates that are further examined for coincidences among various data stretches. For some candidates we have also investigated the change of the signal-to-noise ratio when we increase the observation time from two to four days. Our analysis has not revealed any gravitational-wave signals. Therefore we have imposed upper limits on the dimensionless gravitational-wave amplitude over the parameter space that we have searched. Depending on frequency, our upper limit ranges from 3.4×10233.4 \times 10^{-23} to 1.3×10221.3 \times 10^{-22}. We have attempted a statistical verification of the hypotheses leading to our conclusions. We estimate that our upper limit is accurate to within 18%.Comment: LaTeX, 12 page
    corecore