153 research outputs found

    Evidence of phonon-charge-density-waves coupling in ErTe3_3

    Full text link
    The vibrational properties of ErTe3_3 were investigated using Raman spectroscopy and analyzed on the basis of peculiarities of the RTe3_3 crystal structure. Four Raman active modes for the undistorted structure, predicted by factor-group analysis, are experimentally observed and assigned according to diperiodic symmetry of the ErTe3_3 layer. By analyzing temperature dependence of the Raman mode energy and intensity we have provided the clear evidence that all Raman modes, active in the normal phase, are coupled to the charge density waves. In addition, new modes have been observed in the distorted state

    Giant Carrier Mobility in Single Crystals of FeSb2

    Full text link
    We report the giant carrier mobility in single crystals of FeSb2. Nonlinear field dependence of Hall resistivity is well described with the two-carrier model. Maximum mobility values in high mobility band reach ~10^5 cm^2/Vs at 8 K, and are ~10^2 cm^2/Vs at the room temperature. Our results point to a class of materials with promising potential for applications in solid state electronics.Comment: 5 pages, 3 figures. Applied Physics Letters (in press

    Absence of localized-spin magnetism in the narrow-gap semiconductor FeSb2

    Full text link
    We report inelastic neutron scattering measurements aimed at investigating the origin of the temperature-induced paramagnetism in the narrow-gap semiconductor FeSb2. We find that inelastic response for energies up to 60 meV and at temperatures 4.2 K, 300 K and 550 K is essentially consistent with the scattering by lattice phonon excitations. We observe no evidence for a well-defined magnetic peak corresponding to the excitation from the non-magnetic S = 0 singlet ground state to a state of magnetic multiplet in the localized spin picture. Our data establish the quantitative limit of S_{eff}^2 < 0.25 on the fluctuating local spin. However, a broad magnetic scattering continuum in the 15 meV to 35 meV energy range is not ruled out by our data. Our findings make description in terms of the localized Fe spins unlikely and suggest that paramagnetic susceptibility of itinerant electrons is at the origin of the temperature-induced magnetism in FeSb2.Comment: 9 pages, 9 figures, revised and amende

    Wiedemann-Franz law and non-vanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2

    Get PDF
    The in-plane thermal conductivity kappa(T) and electrical resistivity rho(T) of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point, Hc, at which antiferromagnetic order ends. The thermal and electrical resistivities, w(T) and rho(T), show a linear temperature dependence below 1 K, typical of the non-Fermi liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T* ~ 0.35 K, which depends weakly on H, w(T) and rho(T) both deviate downward and converge in the T = 0 limit. We propose that T* marks the onset of short-range magnetic correlations, persisting beyond Hc. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at Hc, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.Comment: 8 figures, 8 page

    Evidence for electron-phonon interaction in Fe1x_{1-x}Mx_{x}Sb2_{2} (M=Co, Cr) single crystals

    Full text link
    We have measured polarized Raman scattering spectra of the Fe1x_{1-x}Cox_{x}Sb2_{2} and Fe1x_{1-x}Crx_{x}Sb2_{2} (0x\leq x\leq 0.5) single crystals in the temperature range between 15 K and 300 K. The highest energy B1gB_{1g} symmetry mode shows significant line asymmetry due to phonon mode coupling width electronic background. The coupling constant achieves the highest value at about 40 K and after that it remains temperature independent. Origin of additional mode broadening is pure anharmonic. Below 40 K the coupling is drastically reduced, in agreement with transport properties measurements. Alloying of FeSb2_2 with Co and Cr produces the B1g_{1g} mode narrowing, i.e. weakening of the electron-phonon interaction. In the case of Ag_{g} symmetry modes we have found a significant mode mixing
    corecore