942 research outputs found
Cavity Soliton Laser based on mutually coupled semiconductor microresonators
We report on experimental observation of localized structures in two mutually
coupled broad-areahttp://hal.archives-ouvertes.fr/images/calendar.gif
semiconductor resonators. These structures coexist with a dark homogeneous
background and they have the same properties as cavity solitons without
requiring the presence of a driving beam into the system. They can be switched
individually on and off by means of a local addressing beam
Interaction of cavity solitons in degenerate optical parametric oscillators
Numerical studies together with asymptotic and spectral analysis establish
regimes where soliton pairs in degenerate optical parametric oscillators fuse,
repel, or form bound states. A novel bound state stabilized by coupled internal
oscillations is predicted.Comment: 3 page
Cavity Light Bullets: 3D Localized Structures in a Nonlinear Optical Resonator
We consider the paraxial model for a nonlinear resonator with a saturable
absorber beyond the mean-field limit and develop a method to study the
modulational instabilities leading to pattern formation in all three spatial
dimensions. For achievable parametric domains we observe total radiation
confinement and the formation of 3D localised bright structures. At difference
from freely propagating light bullets, here the self-organization proceeds from
the resonator feedback, combined with diffraction and nonlinearity. Such
"cavity" light bullets can be independently excited and erased by appropriate
pulses, and once created, they endlessly travel the cavity roundtrip. Also, the
pulses can shift in the transverse direction, following external field
gradients.Comment: 4 pages, 3 figures, simulations files available at
http://www.ba.infn.it/~maggipin/PRLmovies.htm, submitted to Physical Review
Letters on 24 March 200
Dissipative solitons which cannot be trapped
In this paper we study the behavior of dissipative solitons in systems with
high order nonlinear dissipation and show how they cannot survive under the
effect of trapping potentials both of rigid wall type or asymptotically
increasing ones. This provides an striking example of a soliton which cannot be
trapped and only survives to the action of a weak potential
Generation of unipolar pulses in a circular Raman-active medium excited by few-cycle optical pulses
We study theoretically a new possibility of unipolar pulses generation in
Raman-active medium excited by a series of few-cycle optical pulses. We
consider the case when the Raman-active particles are uniformly distributed
along the circle, and demonstrate a possibility to obtain a unipolar
rectangular video pulses with an arbitrarily long duration, ranging from a
minimum value equal to the natural period of the low frequency vibrations in
the Raman-active medium
Nonlinear switching and solitons in PT-symmetric photonic systems
One of the challenges of the modern photonics is to develop all-optical
devices enabling increased speed and energy efficiency for transmitting and
processing information on an optical chip. It is believed that the recently
suggested Parity-Time (PT) symmetric photonic systems with alternating regions
of gain and loss can bring novel functionalities. In such systems, losses are
as important as gain and, depending on the structural parameters, gain
compensates losses. Generally, PT systems demonstrate nontrivial
non-conservative wave interactions and phase transitions, which can be employed
for signal filtering and switching, opening new prospects for active control of
light. In this review, we discuss a broad range of problems involving nonlinear
PT-symmetric photonic systems with an intensity-dependent refractive index.
Nonlinearity in such PT symmetric systems provides a basis for many effects
such as the formation of localized modes, nonlinearly-induced PT-symmetry
breaking, and all-optical switching. Nonlinear PT-symmetric systems can serve
as powerful building blocks for the development of novel photonic devices
targeting an active light control.Comment: 33 pages, 33 figure
Maxwell-Drude-Bloch dissipative few-cycle optical solitons
We study the propagation of few-cycle pulses in two-component medium
consisting of nonlinear amplifying and absorbing two-level centers embedded
into a linear and conductive host material. First we present a linear theory of
propagation of short pulses in a purely conductive material, and demonstrate
the diffusive behavior for the evolution of the low-frequency components of the
magnetic field in the case of relatively strong conductivity. Then, numerical
simulations carried out in the frame of the full nonlinear theory involving the
Maxwell-Drude-Bloch model reveal the stable creation and propagation of
few-cycle dissipative solitons under excitation by incident femtosecond optical
pulses of relatively high energies. The broadband losses that are introduced by
the medium conductivity represent the main stabilization mechanism for the
dissipative few-cycle solitons.Comment: 38 pages, 10 figures. submitted to Physical Review
- …
