19,622 research outputs found
Extended Palatini action for general relativity and the natural emergence of the cosmological constant
In the Palatini action of general relativity the connection and the metric
are treated as independent dynamical variables. Instead of assuming a relation
between these quantities, the desired relation between them is derived through
the Euler-Lagrange equations of the Palatini action. In this manuscript we
construct an extended Palatini action, where we do not assume any a priori
relationship between the connection, the covariant metric tensor, and the
contravariant metric tensor. Instead we treat these three quantities as
independent dynamical variables. We show that this action reproduces the
standard Einstein field equations depending on a single metric tensor. We
further show that in this formulation the cosmological constant has an
additional theoretical significance. Normally the cosmological constant is
added to the Einstein field equations for the purpose of having general
relativity be consistent with cosmological observations. In the formulation
presented here, the nonvanishing cosmological constant also ensures the
self-consistency of the theory.Comment: in the revised version the original scalar matter action is replaced
with a general matter actio
Quantitative bounds on convergence of time-inhomogeneous Markov chains
Convergence rates of Markov chains have been widely studied in recent years.
In particular, quantitative bounds on convergence rates have been studied in
various forms by Meyn and Tweedie [Ann. Appl. Probab. 4 (1994) 981-1101],
Rosenthal [J. Amer. Statist. Assoc. 90 (1995) 558-566], Roberts and Tweedie
[Stochastic Process. Appl. 80 (1999) 211-229], Jones and Hobert [Statist. Sci.
16 (2001) 312-334] and Fort [Ph.D. thesis (2001) Univ. Paris VI]. In this
paper, we extend a result of Rosenthal [J. Amer. Statist. Assoc. 90 (1995)
558-566] that concerns quantitative convergence rates for time-homogeneous
Markov chains. Our extension allows us to consider f-total variation distance
(instead of total variation) and time-inhomogeneous Markov chains. We apply our
results to simulated annealing.Comment: Published at http://dx.doi.org/10.1214/105051604000000620 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
Fabrication of titanium multi-wall Thermal Protection System (TPS) test panel arrays
Several arrays were designed and tested. Tests included vibrational and acoustical tests, radiant heating tests, and thermal conductivity tests. A feasible manufacturing technique was established for producing the protection system panels
Re-design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels
The Titanium Multi-wall Thermal Protection System (TIPS) panel was re-designed to incorporate Ti-6-2-4-2 outer sheets for the hot surface, ninety degree side closures for ease of construction and through panel fastness for ease of panel removal. Thermal and structural tests were performed to verify the design. Twenty-five panels were fabricated and delivered to NASA for evaluation at Langley Research Center and Johnson Space Center
Regularization of the second-order gravitational perturbations produced by a compact object
The equations for the second-order gravitational perturbations produced by a
compact-object have highly singular source terms at the point particle limit.
At this limit the standard retarded solutions to these equations are
ill-defined. Here we construct well-defined and physically meaningful solutions
to these equations. These solutions are important for practical calculations:
the planned gravitational-wave detector LISA requires preparation of waveform
templates for the potential gravitational-waves. Construction of templates with
desired accuracy for extreme mass ratio binaries, in which a compact-object
inspirals towards a supermassive black-hole, requires calculation of the
second-order gravitational perturbations produced by the compact-object.Comment: 12 pages, discussion expanded, to be published in Phys. Rev. D Rapid
Communicatio
Laminar flow analysis of plane disk slinger seal
Flow and temperature field analysis of a plane disk slinger sea
- …
