709 research outputs found

    On the Minimum Distance of Array-Based Spatially-Coupled Low-Density Parity-Check Codes

    Full text link
    An array low-density parity-check (LDPC) code is a quasi-cyclic LDPC code specified by two integers qq and mm, where qq is an odd prime and mqm \leq q. The exact minimum distance, for small qq and mm, has been calculated, and tight upper bounds on it for m7m \leq 7 have been derived. In this work, we study the minimum distance of the spatially-coupled version of these codes. In particular, several tight upper bounds on the optimal minimum distance for coupling length at least two and m=3,4,5m=3,4,5, that are independent of qq and that are valid for all values of qq0q \geq q_0 where q0q_0 depends on mm, are presented. Furthermore, we show by exhaustive search that by carefully selecting the edge spreading or unwrapping procedure, the minimum distance (when qq is not very large) can be significantly increased, especially for m=5m=5.Comment: 5 pages. To be presented at the 2015 IEEE International Symposium on Information Theory, June 14-19, 2015, Hong Kon

    Good Concatenated Code Ensembles for the Binary Erasure Channel

    Full text link
    In this work, we give good concatenated code ensembles for the binary erasure channel (BEC). In particular, we consider repeat multiple-accumulate (RMA) code ensembles formed by the serial concatenation of a repetition code with multiple accumulators, and the hybrid concatenated code (HCC) ensembles recently introduced by Koller et al. (5th Int. Symp. on Turbo Codes & Rel. Topics, Lausanne, Switzerland) consisting of an outer multiple parallel concatenated code serially concatenated with an inner accumulator. We introduce stopping sets for iterative constituent code oriented decoding using maximum a posteriori erasure correction in the constituent codes. We then analyze the asymptotic stopping set distribution for RMA and HCC ensembles and show that their stopping distance hmin, defined as the size of the smallest nonempty stopping set, asymptotically grows linearly with the block length. Thus, these code ensembles are good for the BEC. It is shown that for RMA code ensembles, contrary to the asymptotic minimum distance dmin, whose growth rate coefficient increases with the number of accumulate codes, the hmin growth rate coefficient diminishes with the number of accumulators. We also consider random puncturing of RMA code ensembles and show that for sufficiently high code rates, the asymptotic hmin does not grow linearly with the block length, contrary to the asymptotic dmin, whose growth rate coefficient approaches the Gilbert-Varshamov bound as the rate increases. Finally, we give iterative decoding thresholds for the different code ensembles to compare the convergence properties.Comment: To appear in IEEE Journal on Selected Areas in Communications, special issue on Capacity Approaching Code

    On the Minimum/Stopping Distance of Array Low-Density Parity-Check Codes

    Get PDF
    In this work, we study the minimum/stopping distance of array low-density parity-check (LDPC) codes. An array LDPC code is a quasi-cyclic LDPC code specified by two integers q and m, where q is an odd prime and m <= q. In the literature, the minimum/stopping distance of these codes (denoted by d(q,m) and h(q,m), respectively) has been thoroughly studied for m <= 5. Both exact results, for small values of q and m, and general (i.e., independent of q) bounds have been established. For m=6, the best known minimum distance upper bound, derived by Mittelholzer (IEEE Int. Symp. Inf. Theory, Jun./Jul. 2002), is d(q,6) <= 32. In this work, we derive an improved upper bound of d(q,6) <= 20 and a new upper bound d(q,7) <= 24 by using the concept of a template support matrix of a codeword/stopping set. The bounds are tight with high probability in the sense that we have not been able to find codewords of strictly lower weight for several values of q using a minimum distance probabilistic algorithm. Finally, we provide new specific minimum/stopping distance results for m <= 7 and low-to-moderate values of q <= 79.Comment: To appear in IEEE Trans. Inf. Theory. The material in this paper was presented in part at the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, June/July 201

    Further Results on Quadratic Permutation Polynomial-Based Interleavers for Turbo Codes

    Full text link
    An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are of particular interest because they admit analytical designs and simple, practical hardware implementation. Also, the recently proposed quadratic permutation polynomial (QPP) based interleavers by Sun and Takeshita (IEEE Trans. Inf. Theory, Jan. 2005) provide excellent performance for short-to-medium block lengths, and have been selected for the 3GPP LTE standard. In this work, we derive some upper bounds on the best achievable minimum distance dmin of QPP-based conventional binary turbo codes (with tailbiting termination, or dual termination when the interleaver length N is sufficiently large) that are tight for larger block sizes. In particular, we show that the minimum distance is at most 2(2^{\nu +1}+9), independent of the interleaver length, when the QPP has a QPP inverse, where {\nu} is the degree of the primitive feedback and monic feedforward polynomials. However, allowing the QPP to have a larger degree inverse may give strictly larger minimum distances (and lower multiplicities). In particular, we provide several QPPs with an inverse degree of at least three for some of the 3GPP LTE interleaver lengths giving a dmin with the 3GPP LTE constituent encoders which is strictly larger than 50. For instance, we have found a QPP for N=6016 which gives an estimated dmin of 57. Furthermore, we provide the exact minimum distance and the corresponding multiplicity for all 3GPP LTE turbo codes (with dual termination) which shows that the best minimum distance is 51. Finally, we compute the best achievable minimum distance with QPP interleavers for all 3GPP LTE interleaver lengths N <= 4096, and compare the minimum distance with the one we get when using the 3GPP LTE polynomials.Comment: Submitted to IEEE Trans. Inf. Theor

    Minimum Pseudoweight Analysis of 3-Dimensional Turbo Codes

    Full text link
    In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs). We present a relaxed LP decoder for 3D-TCs, adapting the relaxed LP decoder for conventional turbo codes proposed by Feldman in his thesis. We show that the 3D-TC polytope is proper and CC-symmetric, and make a connection to finite graph covers of the 3D-TC factor graph. This connection is used to show that the support set of any pseudocodeword is a stopping set of iterative decoding of 3D-TCs using maximum a posteriori constituent decoders on the binary erasure channel. Furthermore, we compute ensemble-average pseudoweight enumerators of 3D-TCs and perform a finite-length minimum pseudoweight analysis for small cover degrees. Also, an explicit description of the fundamental cone of the 3D-TC polytope is given. Finally, we present an extensive numerical study of small-to-medium block length 3D-TCs, which shows that 1) typically (i.e., in most cases) when the minimum distance dmind_{\rm min} and/or the stopping distance hminh_{\rm min} is high, the minimum pseudoweight (on the additive white Gaussian noise channel) is strictly smaller than both the dmind_{\rm min} and the hminh_{\rm min}, and 2) the minimum pseudoweight grows with the block length, at least for small-to-medium block lengths.Comment: To appear in IEEE Transactions on Communication

    Efficient Maximum-Likelihood Decoding of Linear Block Codes on Binary Memoryless Channels

    Full text link
    In this work, we consider efficient maximum-likelihood decoding of linear block codes for small-to-moderate block lengths. The presented approach is a branch-and-bound algorithm using the cutting-plane approach of Zhang and Siegel (IEEE Trans. Inf. Theory, 2012) for obtaining lower bounds. We have compared our proposed algorithm to the state-of-the-art commercial integer program solver CPLEX, and for all considered codes our approach is faster for both low and high signal-to-noise ratios. For instance, for the benchmark (155,64) Tanner code our algorithm is more than 11 times as fast as CPLEX for an SNR of 1.0 dB on the additive white Gaussian noise channel. By a small modification, our algorithm can be used to calculate the minimum distance, which we have again verified to be much faster than using the CPLEX solver.Comment: Submitted to 2014 International Symposium on Information Theory. 5 Pages. Accepte
    corecore