709 research outputs found
On the Minimum Distance of Array-Based Spatially-Coupled Low-Density Parity-Check Codes
An array low-density parity-check (LDPC) code is a quasi-cyclic LDPC code
specified by two integers and , where is an odd prime and . The exact minimum distance, for small and , has been calculated, and
tight upper bounds on it for have been derived. In this work, we
study the minimum distance of the spatially-coupled version of these codes. In
particular, several tight upper bounds on the optimal minimum distance for
coupling length at least two and , that are independent of and
that are valid for all values of where depends on , are
presented. Furthermore, we show by exhaustive search that by carefully
selecting the edge spreading or unwrapping procedure, the minimum distance
(when is not very large) can be significantly increased, especially for
.Comment: 5 pages. To be presented at the 2015 IEEE International Symposium on
Information Theory, June 14-19, 2015, Hong Kon
Good Concatenated Code Ensembles for the Binary Erasure Channel
In this work, we give good concatenated code ensembles for the binary erasure
channel (BEC). In particular, we consider repeat multiple-accumulate (RMA) code
ensembles formed by the serial concatenation of a repetition code with multiple
accumulators, and the hybrid concatenated code (HCC) ensembles recently
introduced by Koller et al. (5th Int. Symp. on Turbo Codes & Rel. Topics,
Lausanne, Switzerland) consisting of an outer multiple parallel concatenated
code serially concatenated with an inner accumulator. We introduce stopping
sets for iterative constituent code oriented decoding using maximum a
posteriori erasure correction in the constituent codes. We then analyze the
asymptotic stopping set distribution for RMA and HCC ensembles and show that
their stopping distance hmin, defined as the size of the smallest nonempty
stopping set, asymptotically grows linearly with the block length. Thus, these
code ensembles are good for the BEC. It is shown that for RMA code ensembles,
contrary to the asymptotic minimum distance dmin, whose growth rate coefficient
increases with the number of accumulate codes, the hmin growth rate coefficient
diminishes with the number of accumulators. We also consider random puncturing
of RMA code ensembles and show that for sufficiently high code rates, the
asymptotic hmin does not grow linearly with the block length, contrary to the
asymptotic dmin, whose growth rate coefficient approaches the Gilbert-Varshamov
bound as the rate increases. Finally, we give iterative decoding thresholds for
the different code ensembles to compare the convergence properties.Comment: To appear in IEEE Journal on Selected Areas in Communications,
special issue on Capacity Approaching Code
On the Minimum/Stopping Distance of Array Low-Density Parity-Check Codes
In this work, we study the minimum/stopping distance of array low-density
parity-check (LDPC) codes. An array LDPC code is a quasi-cyclic LDPC code
specified by two integers q and m, where q is an odd prime and m <= q. In the
literature, the minimum/stopping distance of these codes (denoted by d(q,m) and
h(q,m), respectively) has been thoroughly studied for m <= 5. Both exact
results, for small values of q and m, and general (i.e., independent of q)
bounds have been established. For m=6, the best known minimum distance upper
bound, derived by Mittelholzer (IEEE Int. Symp. Inf. Theory, Jun./Jul. 2002),
is d(q,6) <= 32. In this work, we derive an improved upper bound of d(q,6) <=
20 and a new upper bound d(q,7) <= 24 by using the concept of a template
support matrix of a codeword/stopping set. The bounds are tight with high
probability in the sense that we have not been able to find codewords of
strictly lower weight for several values of q using a minimum distance
probabilistic algorithm. Finally, we provide new specific minimum/stopping
distance results for m <= 7 and low-to-moderate values of q <= 79.Comment: To appear in IEEE Trans. Inf. Theory. The material in this paper was
presented in part at the 2014 IEEE International Symposium on Information
Theory, Honolulu, HI, June/July 201
Further Results on Quadratic Permutation Polynomial-Based Interleavers for Turbo Codes
An interleaver is a critical component for the channel coding performance of
turbo codes. Algebraic constructions are of particular interest because they
admit analytical designs and simple, practical hardware implementation. Also,
the recently proposed quadratic permutation polynomial (QPP) based interleavers
by Sun and Takeshita (IEEE Trans. Inf. Theory, Jan. 2005) provide excellent
performance for short-to-medium block lengths, and have been selected for the
3GPP LTE standard. In this work, we derive some upper bounds on the best
achievable minimum distance dmin of QPP-based conventional binary turbo codes
(with tailbiting termination, or dual termination when the interleaver length N
is sufficiently large) that are tight for larger block sizes. In particular, we
show that the minimum distance is at most 2(2^{\nu +1}+9), independent of the
interleaver length, when the QPP has a QPP inverse, where {\nu} is the degree
of the primitive feedback and monic feedforward polynomials. However, allowing
the QPP to have a larger degree inverse may give strictly larger minimum
distances (and lower multiplicities). In particular, we provide several QPPs
with an inverse degree of at least three for some of the 3GPP LTE interleaver
lengths giving a dmin with the 3GPP LTE constituent encoders which is strictly
larger than 50. For instance, we have found a QPP for N=6016 which gives an
estimated dmin of 57. Furthermore, we provide the exact minimum distance and
the corresponding multiplicity for all 3GPP LTE turbo codes (with dual
termination) which shows that the best minimum distance is 51. Finally, we
compute the best achievable minimum distance with QPP interleavers for all 3GPP
LTE interleaver lengths N <= 4096, and compare the minimum distance with the
one we get when using the 3GPP LTE polynomials.Comment: Submitted to IEEE Trans. Inf. Theor
Minimum Pseudoweight Analysis of 3-Dimensional Turbo Codes
In this work, we consider pseudocodewords of (relaxed) linear programming
(LP) decoding of 3-dimensional turbo codes (3D-TCs). We present a relaxed LP
decoder for 3D-TCs, adapting the relaxed LP decoder for conventional turbo
codes proposed by Feldman in his thesis. We show that the 3D-TC polytope is
proper and -symmetric, and make a connection to finite graph covers of the
3D-TC factor graph. This connection is used to show that the support set of any
pseudocodeword is a stopping set of iterative decoding of 3D-TCs using maximum
a posteriori constituent decoders on the binary erasure channel. Furthermore,
we compute ensemble-average pseudoweight enumerators of 3D-TCs and perform a
finite-length minimum pseudoweight analysis for small cover degrees. Also, an
explicit description of the fundamental cone of the 3D-TC polytope is given.
Finally, we present an extensive numerical study of small-to-medium block
length 3D-TCs, which shows that 1) typically (i.e., in most cases) when the
minimum distance and/or the stopping distance is
high, the minimum pseudoweight (on the additive white Gaussian noise channel)
is strictly smaller than both the and the , and 2)
the minimum pseudoweight grows with the block length, at least for
small-to-medium block lengths.Comment: To appear in IEEE Transactions on Communication
Efficient Maximum-Likelihood Decoding of Linear Block Codes on Binary Memoryless Channels
In this work, we consider efficient maximum-likelihood decoding of linear
block codes for small-to-moderate block lengths. The presented approach is a
branch-and-bound algorithm using the cutting-plane approach of Zhang and Siegel
(IEEE Trans. Inf. Theory, 2012) for obtaining lower bounds. We have compared
our proposed algorithm to the state-of-the-art commercial integer program
solver CPLEX, and for all considered codes our approach is faster for both low
and high signal-to-noise ratios. For instance, for the benchmark (155,64)
Tanner code our algorithm is more than 11 times as fast as CPLEX for an SNR of
1.0 dB on the additive white Gaussian noise channel. By a small modification,
our algorithm can be used to calculate the minimum distance, which we have
again verified to be much faster than using the CPLEX solver.Comment: Submitted to 2014 International Symposium on Information Theory. 5
Pages. Accepte
- …
