985 research outputs found

    Does air pollution cause respiratory illness? A new look at Canadian cities

    Get PDF
    It is routinely asserted that urban air pollution is a major cause of acute respiratory conditions, leading to thousands of hospitalizations each year. The claim is based on inferences from partial correlations between ambient air pollution levels and hospitalization rates. Yet questions persist about the statistical robustness of the epidemiological findings, and controlled experiments have not confirmed the statistical findings. In this paper we present and analyze a new monthly data base showing concentrations of five major air contaminants in 11 large Canadian cities from 1974 to 1994, matched with monthly hospital admission rates by age group for all lung diagnostic categories; as well as a comprehensive set of socioeconomic and meteorological covariates. We compare two estimation approaches: model selection and Bayesian model averaging. Almost all of our estimates of the health effects of air pollution are insignificant. Two pollutant types have significantly negative coefficients, indicating, if interpreted in the standard way, that these pollutants are actually beneficial for health. We do not claim this, but we conclude that the perceived statistical relationship between air pollution and health is not robust

    Reid on knowledge and justification in Physical Education

    Get PDF
    [FIRST PARAGRAPHS] To my knowledge, very little has been written on the educational justification of PE activities for the last decade. Since PE now does have a place on the National Curriculum, albeit arguably a minor one, the justification issue does seem to have been put on the back burner by the profession. In a recent and welcome addition to the literature, Reid revisits the debate, outlining two ‘conventional assumptions’ made by what he calls the ‘new orthodoxy’ in PE: 1. The ‘early Hirstian’ account3, which sees knowledge as propositional, and education as academic. When applied to PE, this suggests: 2. The distinction between practical performance and the ‘theory’ related to it - i.e. the propositional knowledge of Human Movement Science (HMS). The paper is a critique of these two assumptions, and a defence of the claim that PE ‘can indeed satisfy the knowledge requirements of education; but ... without making claims to academic significance’ (p95)

    Two-year impact of praziquantel treatment for Schistosoma japonicum infection in China: re-infection, subclinical disease and fibrosis marker measurements

    Get PDF
    We studied a community cohort of 193 individuals exposed to endemic Schistosoma japonicum infection in the Dongting Lake region of China to assess subclinical morbidity and the 2-year benefit of curative therapy (praziquantel) administered in 1996. Prevalence and intensity of S. japonicum infection before treatment were 28% and 192 eggs per gram faeces (epg), respectively. Two years after cure, 22% of the cohort were reinfected, but with a lighter intensity (67 epg). Sixty-four subjects (37%) showed significant improvement in ultrasound parenchyma images after treatment and 51 subjects (54%) showed significant improvement of periportal fibrosis. Left-lobe enlargement also reversed (P 0·05). The serum levels of laminin and collagen IV associated with reinfection and intensity and hyaluronic acid levels correlated with ultrasound findings (P < 0·01). Overall, treatment induced a marked decrease in subclinical hepatosplenic morbidity attributable to S. japonicum although low-intensity re-infection after treatment remained relatively frequent. Stratified analysis and logistic models evaluated potential confounding factors for assessment of treatment effects on hepatic fibrosis. S. japonicum infection and moderate-heavy alcohol intake interacted: improvement in parenchymal morbidity was impeded among drinkers (P < 0·05). Chemotherapy focused on at-risk residents controls prevalent subclinical hepatic fibrosis but re-infection indicates the need for complementary control strategie

    Natural variation in Arabidopsis thaliana reveals shoot ionome, biomass, and gene expression changes as biomarkers for zinc deficiency tolerance

    Get PDF
    Zinc (Zn) is an essential nutrient for plants, with a crucial role as a cofactor for many enzymes. Approximately one-third of the global arable land area is Zn deficient, leading to reduced crop yield and quality. To improve crop tolerance to Zn deficiency, it is important to understand the mechanisms plants have adopted to tolerate suboptimal Zn supply. In this study, physiological and molecular aspects of traits related to Zn deficiency tolerance were examined in a panel of 19 Arabidopsis thaliana accessions. Accessions showed a larger variation for shoot biomass than for Zn concentration, indicating that they have different requirements for their minimal Zn concentration required for growth. Accessions with a higher tolerance to Zn deficiency showed an increased expression of the Zn deficiency-responsive genes ZIP4 and IRT3 in comparison with Zn deficiency-sensitive accessions. Changes in the shoot ionome, as a result of the Zn treatment of the plants, were used to build a multinomial logistic regression model able to distinguish plants regarding their Zn nutritional status. This set of biomarkers, reflecting the A. thaliana response to Zn deficiency and Zn deficiency tolerance, can be useful for future studies aiming to improve the performance and Zn status of crop plants grown under suboptimal Zn concentrations

    The Refractive Index of Curved Spacetime II: QED, Penrose Limits and Black Holes

    Full text link
    This work considers the way that quantum loop effects modify the propagation of light in curved space. The calculation of the refractive index for scalar QED is reviewed and then extended for the first time to QED with spinor particles in the loop. It is shown how, in both cases, the low frequency phase velocity can be greater than c, as found originally by Drummond and Hathrell, but causality is respected in the sense that retarded Green functions vanish outside the lightcone. A "phenomenology" of the refractive index is then presented for black holes, FRW universes and gravitational waves. In some cases, some of the polarization states propagate with a refractive index having a negative imaginary part indicating a potential breakdown of the optical theorem in curved space and possible instabilities.Comment: 62 pages, 14 figures, some signs corrected in formulae and graph

    Fractional Dynamics from Einstein Gravity, General Solutions, and Black Holes

    Full text link
    We study the fractional gravity for spacetimes with non-integer dimensions. Our constructions are based on a geometric formalism with the fractional Caputo derivative and integral calculus adapted to nonolonomic distributions. This allows us to define a fractional spacetime geometry with fundamental geometric/physical objects and a generalized tensor calculus all being similar to respective integer dimension constructions. Such models of fractional gravity mimic the Einstein gravity theory and various Lagrange-Finsler and Hamilton-Cartan generalizations in nonholonomic variables. The approach suggests a number of new implications for gravity and matter field theories with singular, stochastic, kinetic, fractal, memory etc processes. We prove that the fractional gravitational field equations can be integrated in very general forms following the anholonomic deformation method for constructing exact solutions. Finally, we study some examples of fractional black hole solutions, fractional ellipsoid gravitational configurations and imbedding of such objects in fractional solitonic backgrounds.Comment: latex2e, 11pt, 40 pages with table of conten

    Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25

    Full text link
    We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final version, with new data in Fig.

    Periodic orbit resonances in layered metals in tilted magnetic fields

    Full text link
    The frequency dependence of the interlayer conductivity of a layered Fermi liquid in a magnetic field which is tilted away from the normal to the layers is considered. For both quasi-one- and quasi-two-dimensional systems resonances occur when the frequency is a harmonic of the frequency at which the magnetic field causes the electrons to oscillate on the Fermi surface within the layers. The intensity of the different harmonic resonances varies significantly with the direction of the field. The resonances occur for both coherent and weakly incoherent interlayer transport and so their observation does not imply the existence of a three-dimensional Fermi surface.Comment: 4 pages, RevTeX + epsf, 2 figures. Discussion of other work revised. To appear in Phys. Rev. B, Rapid Commun., October 1

    Determination of the Fermi Velocity by Angle-dependent Periodic Orbit Resonance Measurements in the Organic Conductor alpha-(BEDT-TTF)2KHg(SCN)4

    Full text link
    We report detailed angle-dependent studies of the microwave (f=50 to 90 GHz) interlayer magneto-electrodynamics of a single crystal sample of the organic charge-density-wave (CDW) conductor alpha-(BEDT-TTF)2KHg(SCN)4. Recently developed instrumentation enables both magnetic field (B) sweeps for a fixed sample orientation and, for the first time, angle sweeps at fixed f/B. We observe series' of resonant absorptions which we attribute to periodic orbit resonances (POR) - a phenomenon closely related to cyclotron resonance. The angle dependence of the POR indicate that they are associated with the low temperature quasi-one-dimensional (Q1D) Fermi surface (FS) of the title compound; indeed, all of the resonance peaks collapse beautifully onto a single set of f/B versus angle curves, generated using a semiclassical magneto-transport theory for a single Q1D FS. We show that Q1D POR measurements provide one of the most direct methods for determining the Fermi velocity, without any detailed assumptions concerning the bandstructure; our analysis yields an average value of v_F=6.5x10^4 m/s. Quantitative analysis of the POR harmonic content indicates that the Q1D FS is strongly corrugated. This is consistent with the assumption that the low-temperature FS derives from a reconstruction of the high temperature quasi-two-dimensional FS, caused by the CDW instability. Detailed analysis of the angle dependence of the POR yields parameters associated with the CDW superstructure which are consistent with published results. Finally, we address the issue as to whether or not the interlayer electrodynamics are coherent in the title compound.Comment: 28 pages, including 6 figures. Submitted to PR

    Target Independence of the Emc-SMC Effect

    Full text link
    An approach to deep inelastic scattering is described in which the matrix elements arising from the operator product expansion are factorised into composite operator propagators and proper vertex functions. In the case of polarised \m p scattering, the composite operator propagator is identified with the square root of the QCD topological susceptibility χ(0)\sqrt{\chi^{\prime}(0)}, while the corresponding proper vertex is a renormalisation group invariant. We estimate χ(0)\chi^{\prime}(0) using QCD spectral sum rules and find that it is significantly suppressed relative to the OZI expectation. Assuming OZI is a good approximation for the proper vertex, our predictions, \int_{0}^{1}dx g_1^p (x;Q^2=10\GV^2)= 0.143 \pm 0.005 and GA(0)ΔΣ=0.353±0.052G^{(0)}_A \equiv \Delta \Sigma = 0.353 \pm 0.052, are in excellent agreement with the new SMC data. This result, together with one confirming the validity of the OZI rule in the \hp radiative decay, supports our earlier conjecture that the suppression in the flavour singlet component of the first moment of g1pg_1^p observed by the EMC-SMC collaboration is a target-independent feature of QCD related to the U(1)U(1) anomaly and is not a property of the proton structure. As a corollary, we extract the magnitude of higher twist effects from the neutron and Bjorken sum rules.Comment: 22 pages, 8 figures available on request
    corecore