1,033 research outputs found
Effects of Electromagnetic Field on the Dynamical Instability of Cylindrical Collapse
The objective of this paper is to discuss the dynamical instability in the
context of Newtonian and post Newtonian regimes. For this purpose, we consider
non-viscous heat conducting charged isotropic fluid as a collapsing matter with
cylindrical symmetry. Darmois junction conditions are formulated. The
perturbation scheme is applied to investigate the influence of dissipation and
electromagnetic field on the dynamical instability. We conclude that the
adiabatic index has smaller value for such a fluid in cylindrically
symmetric than isotropic sphere
A more detailed look at the Opacities for Enriched Carbon and Oxygen Mixtures
We have included opacity tables in our stellar evolution code that enable us
to accurately model the structure of stars composed of mixtures with carbon and
oxygen independently enhanced relative to solar. We present tests to
demonstrate the effects of the new tables. Two of these are practical examples,
the effect on the evolution of a thermally pulsing asymptotic giant branch star
and a Wolf-Rayet Star. The changes are small but perceptible.Comment: 6 pages, 3 figures, 5 tables. Refereed version with corrections
resubmitted to MNRA
Water quality limits for Atlantic salmon (<i>Salmo salar</i> L.) exposed to short term reductions in pH and increased aluminum simulating episodes
International audienceAcidification has caused the loss or reduction of numerous Atlantic salmon (Salmo salar L.) populations on both sides of the North Atlantic. Acid deposition peaked in the 1980's and resulted in both chronically and episodically acidified rivers. At present, water quality is improving in all affected rivers due to reduced acid deposition. However, spring snow melt, heavy rainfall and sea salt episodes can still cause short term drops in pH and elevated concentrations of bioavailable aluminum. Technical malfunction in lime dozers will cause short termed episodic spates in the limed rivers. The current situation has prompted a need for dose-response relationships based on short term exposures of Atlantic salmon to assess the potential population effects of episodic acidification. Water quality guidelines for salmon have been lacking, despite a large number of experiments, all demonstrating dose-response relationships between water chemistry and fish health. We have summarized results from 347 short-term (+ and Al) and as Carlin-tagged smolt releases after preexposure to moderately acidic waters. The results from the various bioassays are compared to water quality limits proposed on basis of the relationship between water quality and population status/health in Norwegian rivers. The focus of this article is placed on chemical-biological interactions that can be drawn across experiments and exposure protocols. We propose dose-response relationships for acid neutralizing capacity (ANC), pH, cationic Al and gill accumulated Al, versus mortality in freshwater, effects on hypo-osmoregulatory capacity in seawater challenge tests and on smolt to adult survival in release experiments. The "no effect" dose depends on the life history stage tested and on the sensitivity of the biomarkers. Parr are more tolerant than smolt. Concentrations of Al that have no significant impact on freshwater life history stages can still have major population effects if they occur prior to smolt migration. While smolt can survive in freshwater for a prolonged period of time (>10 days) at an Al dose resulting in a gill Al concentration of up to 300 µg Alg?1 dw, a 3 day exposure resulting in a gill Al accumulation in the range of 25 to 60 µg Alg?1 dw reduces smolt to adult survival in a dose related manner by 20 to 50%. For smolt to adult survival, the biological significant response is delayed relative to the dose and occurs first after the fish enters the marine environment. In addition to exposure intensity and timing, exposure duration is important for the setting of critical limits
Plasma polarization in high gravity astrophysical objects
Macroscopic plasma polarization, which is created by gravitation and other
mass-acting (inertial) forces in massive astrophysical objects is under
discussion. Non-ideality effect due to strong Coulomb interaction of charged
particles is introduced into consideration as a new source of such
polarization. Simplified situation of totally equilibrium isothermal star
without relativistic effects and influence of magnetic field is considered. The
study is based on variational approach combined with "local density
approximation". It leads to two local forms of thermodynamic equilibrium
conditions: constancy for generalized (electro)chemical potentials and/or
conditions of equilibrium for the forces acting on each charged specie. New
"non-ideality potential" and "non-ideality force" appear naturally in this
consideration. Hypothetical sequences of gravitational, inertial and
non-ideality polarization on thermo- and hydrodynamics of massive astrophysical
objects are under discussion.Comment: 6 pages, no figures, 35 refs, Int. Conference "Physics of Non-Ideal
Plasmas" (PNP-13), Chernogolovka, September 2009, Russi
Radiative transfer in very optically thick circumstellar disks
In this paper we present two efficient implementations of the diffusion
approximation to be employed in Monte Carlo computations of radiative transfer
in dusty media of massive circumstellar disks. The aim is to improve the
accuracy of the computed temperature structure and to decrease the computation
time. The accuracy, efficiency and applicability of the methods in various
corners of parameter space are investigated. The effects of using these methods
on the vertical structure of the circumstellar disk as obtained from
hydrostatic equilibrium computations are also addressed. Two methods are
presented. First, an energy diffusion approximation is used to improve the
accuracy of the temperature structure in highly obscured regions of the disk,
where photon counts are low. Second, a modified random walk approximation is
employed to decrease the computation time. This modified random walk ensures
that the photons that end up in the high-density regions can quickly escape to
the lower density regions, while the energy deposited by these photons in the
disk is still computed accurately. A new radiative transfer code, MCMax, is
presented in which both these diffusion approximations are implemented. These
can be used simultaneously to increase both computational speed and decrease
statistical noise. We conclude that the diffusion approximations allow for fast
and accurate computations of the temperature structure, vertical disk structure
and observables of very optically thick circumstellar disks.Comment: Accepted for publication in A&
Charged Annular Disks and Reissner-Nordstr\"{o}m Type Black Holes from Extremal Dust
We present the first analytical superposition of a charged black hole with an
annular disk of extremal dust. In order to obtain the solutions, we first solve
the Einstein-Maxwell field equations for sources that represent disk-like
configurations of matter in confomastatic spacetimes by assuming a functional
dependence among the metric function, the electric potential and an auxiliary
function,which is taken as a solution of the Laplace equation. We then employ
the Lord Kelvin Inversion Method applied to models of finite extension in order
to obtain annular disks. The structures obtained extend to infinity, but their
total masses are finite and all the energy conditions are satisfied. Finally,
we observe that the extremal Reissner-Nordstr\"{o}m black hole can be embedded
into the center of the disks by adding a boundary term in the inversion.Comment: 17 revtex pages, 8 eps figure
(Dis)abling Effects of Technology Use and Socio-material Practices
This paper reports on observations and discussions conducted through a weekly technology support service at a residential care facility for senior citizens. The intention with the fieldwork was to get a better understanding of the knowledge and relations seniors, living in smart homes, have with modern digital technologies. The findings are presented in the form of two vignettes and analysed through the lens of actor-network theory. The analysis shows how the use of technology is immersed in a web of socio-technical relations. It also shows that these relations contribute to dynamically enable or disable actors in a variety of ways. The contribution of this work is to give some reflections on how socio-technical structures affect the character of ability and disability, and the implications this has for the design of welfare technology
Hydrostatic models for the rotation of extra-planar gas in disk galaxies
We show that fluid stationary models are able to reproduce the observed,
negative vertical gradient of the rotation velocity of the extra-planar gas in
spiral galaxies. We have constructed models based on the simple condition that
the pressure of the medium does not depend on density alone (baroclinic instead
of barotropic solutions: isodensity and isothermal surfaces do not coincide).
As an illustration, we have successfully applied our method to reproduce the
observed velocity gradient of the lagging gaseous halo of NGC 891. The fluid
stationary models discussed here can describe a hot homogeneous medium as well
as a "gas" made of discrete, cold HI clouds with an isotropic velocity
dispersion distribution. Although the method presented here generates a density
and velocity field consistent with observational constraints, the stability of
these configurations remains an open question.Comment: 12 pages, 9 figures. Accepted for publication in Astronomy and
Astrophysic
The non-uniform, dynamic atmosphere of Betelgeuse observed at mid-infrared wavelengths
We present an interferometric study of the continuum surface of the red
supergiant star Betelgeuse at 11.15 microns wavelength, using data obtained
with the Berkeley Infrared Spatial Interferometer each year between 2006 and
2010. These data allow an investigation of an optically thick layer within 1.4
stellar radii of the photosphere. The layer has an optical depth of ~1 at 11.15
microns, and varies in temperature between 1900 K and 2800 K and in outer
radius between 1.16 and 1.36 stellar radii. Electron-hydrogen atom collisions
contribute significantly to the opacity of the layer. The layer has a
non-uniform intensity distribution that changes between observing epochs. These
results indicate that large-scale surface convective activity strongly
influences the dynamics of the inner atmosphere of Betelgeuse, and mass-loss
processes.Comment: 13 pages, 5 figures, in press (ApJ
- …
