1,499 research outputs found

    Single-photon exchange interaction in a semiconductor microcavity

    Get PDF
    We consider the effective coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins and excitons are treated quantum mechanically shows that {\it a single polariton} induces a sizable indirect exchange interaction between otherwise independent spins. The origin, symmetry properties and the intensity of that interaction depend both on the dot-cavity coupling and detuning. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling mediated by a single photon survives above 1 K whereas the exciton mediated coupling survives at 15 K.Comment: 4 pages, 3 figure

    In-gap impurity states as the hallmark of the Quantum Spin Hall phase

    Get PDF
    We study the different response to an impurity of the two topologically different phases shown by a two dimensional insulator with time reversal symmetry, namely, the Quantum Spin Hall and the normal phase. We consider the case of graphene as a toy model that features the two phases driven, respectively, by intrinsic spin-orbit coupling and inversion symmetry breaking. We find that strictly normalizable in-gap impurity states only occur in the Quantum Spin Hall phase and carry dissipationless current whose quirality is determined by the spin and pseudospin of the residing electron. Our results imply that topological order can be unveiled by local probes of defect states.Comment: 5 pages, 3 figure

    Single exciton spectroscopy of semimagnetic quantum dots

    Get PDF
    A photo-excited II-VI semiconductor nanocrystal doped with a few Mn spins is considered. The effects of spin-exciton interactions and the resulting multi-spin correlations on the photoluminescence are calculated by numerical diagonalization of the Hamiltonian, including exchange interaction between electrons, holes and Mn spins, as well as spin-orbit interaction. The results provide a unified description of recent experiments of photoluminesnce of dots with one and many Mn atoms as well as optically induced ferromagnetism in semimagnetic nanocrystals.Comment: 5 pages, 3 figure

    Spin splitting in a polarized quasi-two-dimensional exciton gas

    Get PDF
    We have observed a large spin splitting between "spin" +1+1 and 1-1 heavy-hole excitons, having unbalanced populations, in undoped GaAs/AlAs quantum wells in the absence of any external magnetic field. Time-resolved photoluminescence spectroscopy, under excitation with circularly polarized light, reveals that, for high excitonic density and short times after the pulsed excitation, the emission from majority excitons lies above that of minority ones. The amount of the splitting, which can be as large as 50% of the binding energy, increases with excitonic density and presents a time evolution closely connected with the degree of polarization of the luminescence. Our results are interpreted on the light of a recently developed model, which shows that, while intra-excitonic exchange interaction is responsible for the spin relaxation processes, exciton-exciton interaction produces a breaking of the spin degeneracy in two-dimensional semiconductors.Comment: Revtex, four pages; four figures, postscript file Accepted for publication in Physical Review B (Rapid Commun.

    Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells

    Full text link
    We have shown experimentally that an electric field decreases the energy separation between the two components of a dense spin-polarized exciton gas in a coupled double quantum well, from a maximum splitting of 4\sim 4 meV to zero, at a field of \sim 35 kV/cm. This decrease, due to the field-induced deformation of the exciton wavefunction, is explained by an existing calculation of the change in the spin-dependent exciton-exciton interaction with the electron-hole separation. However, a new theory that considers the modification of screening with that separation is needed to account for the observed dependence on excitation power of the individual energies of the two exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press

    Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom

    Get PDF
    The interaction of electrons with a periodic potential of atoms in crystalline solids gives rise to band structure. The band structure of existing materials can be measured by photoemission spectroscopy and accurately understood in terms of the tight-binding model, however not many experimental approaches exist that allow to tailor artificial crystal lattices using a bottom-up approach. The ability to engineer and study atomically crafted designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS) helps to understand the emergence of material properties. Here, we use atom manipulation of individual vacancies in a chlorine monolayer on Cu(100) to construct one- and two-dimensional structures of various densities and sizes. Local STS measurements reveal the emergence of quasiparticle bands, evidenced by standing Bloch waves, with tuneable dispersion. The experimental data are understood in terms of a tight-binding model combined with an additional broadening term that allows an estimation of the coupling to the underlying substrate.Comment: 7 figures, 12 pages, main text and supplementary materia

    Coherently photo-induced ferromagnetism in diluted magnetic semiconductors

    Get PDF
    Ferromagnetism is predicted in undoped diluted magnetic semiconductors illuminated by intense sub-bandgap laser radiation . The mechanism for photo-induced ferromagnetism is coherence between conduction and valence bands induced by the light which leads to an optical exchange interaction. The ferromagnetic critical temperature T_C depends both on the properties of the material and on the frequency and intensity of the laser and could be above 1 K.Comment: 11 pages, 2 figures, preprint styl

    Spin depolarization in the transport of holes across GaMnAs/GaAlAs/p-GaAs

    Get PDF
    We study the spin polarization of tunneling holes injected from ferromagnetic GaMnAs into a p-doped semiconductor through a tunneling barrier. We obtain an upper limit to the spin injection rate. We find that spin-orbit interaction interaction in the barrier and in the drain limits severely spin injection. Spin depolarization is stronger when the magnetization is parallel to the current than when is perpendicular to it.Comment: Accepted in Phys. Rev. B. 4 pages, 4 figure

    Structure of HrcQ(B)-C, a conserved component of the bacterial type III secretion systems

    Get PDF
    Type III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In addition, type III secretion systems are also required for biogenesis of the bacterial flagellum. The HrcQ(B) protein, a component of the secretion apparatus of Pseudomonas syringae with homologues in all type III systems, has a variable N-terminal and a conserved C-terminal domain (HrcQ(B)-C). Here, we report the crystal structure of HrcQ(B)-C and show that this domain retains the ability of the full-length protein to interact with other type III components. A 3D analysis of sequence conservation patterns reveals two clusters of residues potentially involved in protein–protein interactions. Based on the analogies between HrcQ(B) and its flagellum homologues, we propose that HrcQ(B)-C participates in the formation of a C-ring-like assembly
    corecore