1,499 research outputs found
Single-photon exchange interaction in a semiconductor microcavity
We consider the effective coupling of localized spins in a semiconductor
quantum dot embedded in a microcavity. The lowest cavity mode and the quantum
dot exciton are coupled and close in energy, forming a polariton. The fermions
forming the exciton interact with localized spins via exchange. Exact
diagonalization of a Hamiltonian in which photons, spins and excitons are
treated quantum mechanically shows that {\it a single polariton} induces a
sizable indirect exchange interaction between otherwise independent spins. The
origin, symmetry properties and the intensity of that interaction depend both
on the dot-cavity coupling and detuning. In the case of a (Cd,Mn)Te quantum
dot, Mn-Mn ferromagnetic coupling mediated by a single photon survives above 1
K whereas the exciton mediated coupling survives at 15 K.Comment: 4 pages, 3 figure
In-gap impurity states as the hallmark of the Quantum Spin Hall phase
We study the different response to an impurity of the two topologically
different phases shown by a two dimensional insulator with time reversal
symmetry, namely, the Quantum Spin Hall and the normal phase. We consider the
case of graphene as a toy model that features the two phases driven,
respectively, by intrinsic spin-orbit coupling and inversion symmetry breaking.
We find that strictly normalizable in-gap impurity states only occur in the
Quantum Spin Hall phase and carry dissipationless current whose quirality is
determined by the spin and pseudospin of the residing electron. Our results
imply that topological order can be unveiled by local probes of defect states.Comment: 5 pages, 3 figure
Single exciton spectroscopy of semimagnetic quantum dots
A photo-excited II-VI semiconductor nanocrystal doped with a few Mn spins is
considered. The effects of spin-exciton interactions and the resulting
multi-spin correlations on the photoluminescence are calculated by numerical
diagonalization of the Hamiltonian, including exchange interaction between
electrons, holes and Mn spins, as well as spin-orbit interaction. The results
provide a unified description of recent experiments of photoluminesnce of dots
with one and many Mn atoms as well as optically induced ferromagnetism in
semimagnetic nanocrystals.Comment: 5 pages, 3 figure
Spin splitting in a polarized quasi-two-dimensional exciton gas
We have observed a large spin splitting between "spin" and
heavy-hole excitons, having unbalanced populations, in undoped GaAs/AlAs
quantum wells in the absence of any external magnetic field. Time-resolved
photoluminescence spectroscopy, under excitation with circularly polarized
light, reveals that, for high excitonic density and short times after the
pulsed excitation, the emission from majority excitons lies above that of
minority ones. The amount of the splitting, which can be as large as 50% of the
binding energy, increases with excitonic density and presents a time evolution
closely connected with the degree of polarization of the luminescence. Our
results are interpreted on the light of a recently developed model, which shows
that, while intra-excitonic exchange interaction is responsible for the spin
relaxation processes, exciton-exciton interaction produces a breaking of the
spin degeneracy in two-dimensional semiconductors.Comment: Revtex, four pages; four figures, postscript file Accepted for
publication in Physical Review B (Rapid Commun.
Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells
We have shown experimentally that an electric field decreases the energy
separation between the two components of a dense spin-polarized exciton gas in
a coupled double quantum well, from a maximum splitting of meV to
zero, at a field of 35 kV/cm. This decrease, due to the field-induced
deformation of the exciton wavefunction, is explained by an existing
calculation of the change in the spin-dependent exciton-exciton interaction
with the electron-hole separation. However, a new theory that considers the
modification of screening with that separation is needed to account for the
observed dependence on excitation power of the individual energies of the two
exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press
Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom
The interaction of electrons with a periodic potential of atoms in
crystalline solids gives rise to band structure. The band structure of existing
materials can be measured by photoemission spectroscopy and accurately
understood in terms of the tight-binding model, however not many experimental
approaches exist that allow to tailor artificial crystal lattices using a
bottom-up approach. The ability to engineer and study atomically crafted
designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS)
helps to understand the emergence of material properties. Here, we use atom
manipulation of individual vacancies in a chlorine monolayer on Cu(100) to
construct one- and two-dimensional structures of various densities and sizes.
Local STS measurements reveal the emergence of quasiparticle bands, evidenced
by standing Bloch waves, with tuneable dispersion. The experimental data are
understood in terms of a tight-binding model combined with an additional
broadening term that allows an estimation of the coupling to the underlying
substrate.Comment: 7 figures, 12 pages, main text and supplementary materia
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors
Ferromagnetism is predicted in undoped diluted magnetic semiconductors
illuminated by intense sub-bandgap laser radiation . The mechanism for
photo-induced ferromagnetism is coherence between conduction and valence bands
induced by the light which leads to an optical exchange interaction. The
ferromagnetic critical temperature T_C depends both on the properties of the
material and on the frequency and intensity of the laser and could be above 1
K.Comment: 11 pages, 2 figures, preprint styl
Spin depolarization in the transport of holes across GaMnAs/GaAlAs/p-GaAs
We study the spin polarization of tunneling holes injected from ferromagnetic
GaMnAs into a p-doped semiconductor through a tunneling barrier. We obtain an
upper limit to the spin injection rate. We find that spin-orbit interaction
interaction in the barrier and in the drain limits severely spin injection.
Spin depolarization is stronger when the magnetization is parallel to the
current than when is perpendicular to it.Comment: Accepted in Phys. Rev. B. 4 pages, 4 figure
Structure of HrcQ(B)-C, a conserved component of the bacterial type III secretion systems
Type III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In
addition, type III secretion systems are also required for biogenesis of the bacterial flagellum. The HrcQ(B) protein, a component of the secretion apparatus of Pseudomonas syringae with homologues in all type III systems, has a variable N-terminal and a conserved C-terminal domain (HrcQ(B)-C). Here, we report the crystal structure
of HrcQ(B)-C and show that this domain retains the ability of the full-length protein to interact with other type III components. A 3D analysis of sequence conservation patterns reveals two clusters of residues potentially involved in protein–protein interactions. Based on the analogies between HrcQ(B) and its flagellum homologues,
we propose that HrcQ(B)-C participates in the formation of
a C-ring-like assembly
- …
