10 research outputs found
Optimisation du produit matrice-vecteur creux sur architecture GPU pour un simulateur de réservoir
National audienceFor the Total Company, simulating reservoirs is an important step in the process of optimizing production. Nowadays, these simulations run entirely on CPUs. Thus, we have attempted to accelerate the sparse matrix-vector product operators of the simulation by using GPUs. Common GPU libraries for sparse linear algebra use generic formats for sparse matrix storage, that are more or less performant on GPU but that do not allow to fully exploit the specific structure of the matrices used in the reservoir simulator. In order to exploit this structure, we have adapted for our matrices a storage format that enables us to accelerate with a 20x factor the sparse matrix-vector product on 3 GPUs in comparison with a 8-core CPU, and with a 1.5x factor on GPU in comparison with the generic matrix format used by NVIDIA in cuSPARSE.Pour l'entreprise Total, la simulation de réservoir est une étape importante dans le processus d'optimisation de la production. Actuellement ces simulations s'exécutent entièrement sur CPU. Nous avons donc essayé d'accélérer les produits matrice-vecteur creux contenus dans le simulateur en utilisant des GPUs. Les bibliothèques GPU d'algèbre linéaire creux utilisent des formats génériques de stockage de matrices creuses qui sont plus ou moins performant sur GPU mais qui ne permettent pas d'exploiter la structure particulière des matrices utilisées dans le simulateur de réservoir. Pour exploiter cette structure, nous avons adapté pour nos matrices un format de stockage qui nous permet d'accélérer jusqu'à un facteur 20 le produit matrice-vecteur creux sur 3 GPUs par rapport à 8 coeurs CPU et d'un facteur 1,5 sur GPU par rapport aux formats génériques utilisée par NVIDIA dans cuSPARSE
Un modèle de programmation à grain fin pour la parallélisation de solveurs linéaires creux
Solving large sparse linear system is an essential part of numerical simulations. These resolve can takeup to 80% of the total of the simulation time.An efficient parallelization of sparse linear kernels leads to better performances. In distributed memory,parallelization of these kernels is often done by changing the numerical scheme. Contrariwise, in sharedmemory, a more efficient parallelism can be used. It’s necessary to use two levels of parallelism, a first onebetween nodes of a cluster and a second inside a node.When using iterative methods in shared memory, task-based programming enables the possibility tonaturally describe the parallelism by using as granularity one line of the matrix for one task. Unfortunately,this granularity is too fine and doesn’t allow to obtain good performance.In this thesis, we study the granularity problem of the task-based parallelization. We offer to increasegrain size of computational tasks by creating aggregates of tasks which will become tasks themself. Thenew coarser task graph is composed by the set of these aggregates and the new dependencies betweenaggregates. Then a task scheduler schedules this new graph to obtain better performance. We use as examplethe Incomplete LU factorization of a sparse matrix and we show some improvements made by this method.Then, we focus on NUMA architecture computer. When we use a memory bandwidth limited algorithm onthis architecture, it is interesting to reduce NUMA effects. We show how to take into account these effects ina task-based runtime in order to improve performance of a parallel program.La résolution de grands systèmes linéaires creux est un élément essentiel des simulations numériques.Ces résolutions peuvent représenter jusqu’à 80% du temps de calcul des simulations.Une parallélisation efficace des noyaux d’algèbre linéaire creuse conduira donc à obtenir de meilleures performances. En mémoire distribuée, la parallélisation de ces noyaux se fait le plus souvent en modifiant leschéma numérique. Par contre, en mémoire partagée, un parallélisme plus efficace peut être utilisé. Il est doncimportant d’utiliser deux niveaux de parallélisme, un premier niveau entre les noeuds d’une grappe de serveuret un deuxième niveau à l’intérieur du noeud. Lors de l’utilisation de méthodes itératives en mémoire partagée,les graphes de tâches permettent de décrire naturellement le parallélisme en prenant comme granularité letravail sur une ligne de la matrice. Malheureusement, cette granularité est trop fine et ne permet pas d’obtenirde bonnes performances à cause du surcoût de l’ordonnanceur de tâches.Dans cette thèse, nous étudions le problème de la granularité pour la parallélisation par graphe detâches. Nous proposons d’augmenter la granularité des tâches de calcul en créant des agrégats de tâchesqui deviendront eux-mêmes des tâches. L’ensemble de ces agrégats et des nouvelles dépendances entre lesagrégats forme un graphe de granularité plus grossière. Ce graphe est ensuite utilisé par un ordonnanceur detâches pour obtenir de meilleurs résultats. Nous utilisons comme exemple la factorisation LU incomplète d’unematrice creuse et nous montrons les améliorations apportées par cette méthode. Puis, dans un second temps,nous nous concentrons sur les machines à architecture NUMA. Dans le cas de l’utilisation d’algorithmeslimités par la bande passante mémoire, il est intéressant de réduire les effets NUMA liés à cette architectureen plaçant soi-même les données. Nous montrons comment prendre en compte ces effets dans un intergiciel àbase de tâches pour ainsi améliorer les performances d’un programme parallèle
A NUMA-aware fine grain parallelization framework for multi-core architecture
International audienceIn this paper, we present some solutions to handle to problems commonly encountered when dealing with fine grain parallelization on multi-core architecture: expressing algorithm using a task grain size suitable for the hardware and minimizing the time penalty due to Non Uniform Memory Accesses. To evaluate the benefit of our work we present some experiments on the fine grain parallelization of an iterative solver for spare linear system with some comparisons with the Intel TBB approach.Dans cet article, nous présentons des solutions pour des problèmes couramment rencontrés en parallélisation à grain fin sur les architectures multi-cœurs : exprimer les algorithmes en utilisant une taille de grain adaptée au matériel et minimisant les surcoûts en temps induits par les accès mémoire non uniformes (NUMA). Afin d'évaluer le bénéfice de notre proposition, nous présentons des expérimentations de parallélisation à grain fin d'un solveur itératif pour les systèmes linéaires creux comparées à l'approche Intel TBB
A fine grain model programming for parallelization of sparse linear solver
La résolution de grands systèmes linéaires creux est un élément essentiel des simulations numériques.Ces résolutions peuvent représenter jusqu’à 80% du temps de calcul des simulations.Une parallélisation efficace des noyaux d’algèbre linéaire creuse conduira donc à obtenir de meilleures performances. En mémoire distribuée, la parallélisation de ces noyaux se fait le plus souvent en modifiant leschéma numérique. Par contre, en mémoire partagée, un parallélisme plus efficace peut être utilisé. Il est doncimportant d’utiliser deux niveaux de parallélisme, un premier niveau entre les noeuds d’une grappe de serveuret un deuxième niveau à l’intérieur du noeud. Lors de l’utilisation de méthodes itératives en mémoire partagée,les graphes de tâches permettent de décrire naturellement le parallélisme en prenant comme granularité letravail sur une ligne de la matrice. Malheureusement, cette granularité est trop fine et ne permet pas d’obtenirde bonnes performances à cause du surcoût de l’ordonnanceur de tâches.Dans cette thèse, nous étudions le problème de la granularité pour la parallélisation par graphe detâches. Nous proposons d’augmenter la granularité des tâches de calcul en créant des agrégats de tâchesqui deviendront eux-mêmes des tâches. L’ensemble de ces agrégats et des nouvelles dépendances entre lesagrégats forme un graphe de granularité plus grossière. Ce graphe est ensuite utilisé par un ordonnanceur detâches pour obtenir de meilleurs résultats. Nous utilisons comme exemple la factorisation LU incomplète d’unematrice creuse et nous montrons les améliorations apportées par cette méthode. Puis, dans un second temps,nous nous concentrons sur les machines à architecture NUMA. Dans le cas de l’utilisation d’algorithmeslimités par la bande passante mémoire, il est intéressant de réduire les effets NUMA liés à cette architectureen plaçant soi-même les données. Nous montrons comment prendre en compte ces effets dans un intergiciel àbase de tâches pour ainsi améliorer les performances d’un programme parallèle.Solving large sparse linear system is an essential part of numerical simulations. These resolve can takeup to 80% of the total of the simulation time.An efficient parallelization of sparse linear kernels leads to better performances. In distributed memory,parallelization of these kernels is often done by changing the numerical scheme. Contrariwise, in sharedmemory, a more efficient parallelism can be used. It’s necessary to use two levels of parallelism, a first onebetween nodes of a cluster and a second inside a node.When using iterative methods in shared memory, task-based programming enables the possibility tonaturally describe the parallelism by using as granularity one line of the matrix for one task. Unfortunately,this granularity is too fine and doesn’t allow to obtain good performance.In this thesis, we study the granularity problem of the task-based parallelization. We offer to increasegrain size of computational tasks by creating aggregates of tasks which will become tasks themself. Thenew coarser task graph is composed by the set of these aggregates and the new dependencies betweenaggregates. Then a task scheduler schedules this new graph to obtain better performance. We use as examplethe Incomplete LU factorization of a sparse matrix and we show some improvements made by this method.Then, we focus on NUMA architecture computer. When we use a memory bandwidth limited algorithm onthis architecture, it is interesting to reduce NUMA effects. We show how to take into account these effects ina task-based runtime in order to improve performance of a parallel program
A fine grain model programming for parallelization of sparse linear solver
La résolution de grands systèmes linéaires creux est un élément essentiel des simulations numériques.Ces résolutions peuvent représenter jusqu’à 80% du temps de calcul des simulations.Une parallélisation efficace des noyaux d’algèbre linéaire creuse conduira donc à obtenir de meilleures performances. En mémoire distribuée, la parallélisation de ces noyaux se fait le plus souvent en modifiant leschéma numérique. Par contre, en mémoire partagée, un parallélisme plus efficace peut être utilisé. Il est doncimportant d’utiliser deux niveaux de parallélisme, un premier niveau entre les noeuds d’une grappe de serveuret un deuxième niveau à l’intérieur du noeud. Lors de l’utilisation de méthodes itératives en mémoire partagée,les graphes de tâches permettent de décrire naturellement le parallélisme en prenant comme granularité letravail sur une ligne de la matrice. Malheureusement, cette granularité est trop fine et ne permet pas d’obtenirde bonnes performances à cause du surcoût de l’ordonnanceur de tâches.Dans cette thèse, nous étudions le problème de la granularité pour la parallélisation par graphe detâches. Nous proposons d’augmenter la granularité des tâches de calcul en créant des agrégats de tâchesqui deviendront eux-mêmes des tâches. L’ensemble de ces agrégats et des nouvelles dépendances entre lesagrégats forme un graphe de granularité plus grossière. Ce graphe est ensuite utilisé par un ordonnanceur detâches pour obtenir de meilleurs résultats. Nous utilisons comme exemple la factorisation LU incomplète d’unematrice creuse et nous montrons les améliorations apportées par cette méthode. Puis, dans un second temps,nous nous concentrons sur les machines à architecture NUMA. Dans le cas de l’utilisation d’algorithmeslimités par la bande passante mémoire, il est intéressant de réduire les effets NUMA liés à cette architectureen plaçant soi-même les données. Nous montrons comment prendre en compte ces effets dans un intergiciel àbase de tâches pour ainsi améliorer les performances d’un programme parallèle.Solving large sparse linear system is an essential part of numerical simulations. These resolve can takeup to 80% of the total of the simulation time.An efficient parallelization of sparse linear kernels leads to better performances. In distributed memory,parallelization of these kernels is often done by changing the numerical scheme. Contrariwise, in sharedmemory, a more efficient parallelism can be used. It’s necessary to use two levels of parallelism, a first onebetween nodes of a cluster and a second inside a node.When using iterative methods in shared memory, task-based programming enables the possibility tonaturally describe the parallelism by using as granularity one line of the matrix for one task. Unfortunately,this granularity is too fine and doesn’t allow to obtain good performance.In this thesis, we study the granularity problem of the task-based parallelization. We offer to increasegrain size of computational tasks by creating aggregates of tasks which will become tasks themself. Thenew coarser task graph is composed by the set of these aggregates and the new dependencies betweenaggregates. Then a task scheduler schedules this new graph to obtain better performance. We use as examplethe Incomplete LU factorization of a sparse matrix and we show some improvements made by this method.Then, we focus on NUMA architecture computer. When we use a memory bandwidth limited algorithm onthis architecture, it is interesting to reduce NUMA effects. We show how to take into account these effects ina task-based runtime in order to improve performance of a parallel program
Etude de la parallélisation du produit Matrice/Vecteur creux sur processeurs hétérogènes.
National audienceRapport de stage de fin de Master 2 décrivant l'optimisation d'un produit matrice/vecteur creux sur GPU avec un comparatif de l'efficacité des différents format de stockage des matrices creuses
Optimizing numerical simulations of elastodynamic wave propagation thanks to task-based parallel programming
International audienc
