1,972 research outputs found
Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT)
T cell immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed on the surface of natural killer (NK) cells. TIGIT recognizes nectin and nectin-like adhesion molecules and thus plays a critical role in the innate immune response to malignant transformation. Although the TIGIT nectin-like protein-5 (necl-5) interaction is well understood, how TIGIT engages nectin-2, a receptor that is broadly over-expressed in breast and ovarian cancer, remains unknown. Here, we show that TIGIT bound to the immunoglobulin domain of nectin-2 that is most distal from the membrane with an affinity of 6 μm, which was moderately lower than the affinity observed for the TIGIT/necl-5 interaction (3.2 μm). The TIGIT/nectin-2 binding disrupted pre-assembled nectin-2 oligomers, suggesting that receptor-ligand and ligand-ligand associations are mutually exclusive events. Indeed, the crystal structure of TIGIT bound to the first immunoglobulin domain of nectin-2 indicated that the receptor and ligand dock using the same molecular surface and a conserved “lock and key” binding motifs previously observed to mediate nectin/nectin homotypic interactions as well as TIGIT/necl-5 recognition. Using a mutagenesis approach, we dissected the energetic basis for the TIGIT/nectin-2 interaction and revealed that an “aromatic key” of nectin-2 is critical for this interaction, whereas variations in the lock were tolerated. Moreover, we found that the C-C′ loop of the ligand dictates the TIGIT binding hierarchy. Altogether, these findings broaden our understanding of nectin/nectin receptor interactions and have implications for better understanding the molecular basis for autoimmune disease and cancer
The production, purification and crystallization of a pocilloporin pigment from a reef-forming coral
Reef-building corals contain fluorescent pigments termed pocilloporins that function by regulating the light environment of coral and acting as a photoprotectant in excessive sunlight. These pocilloporins are related to the monomeric green fluorescent protein and the tetrameric DsRed fluorescent proteins, which have widespread use as biotechnological tools. An intensely blue-coloured pocilloporin, termed Rtms5, was expressed in Escherichia coli, purified and crystallized. Rtms5 was shown to be tetrameric, with deep blue crystals that diffract to 2.2 Angstrom resolution and belong to space group I4(1)22. The colour of this pocilloporin was observed to be sensitive to pH and a yellow (pH 3.5) and a red form (pH 4.5) of Rtms5 were also crystallized. These crystals belong to space group P4(2)22 and diffract to 2.4 Angstrom resolution or better
A hot spot on interferon α/β receptor subunit 1 (IFNAR1) underpins its interaction with interferon-β and dictates signaling
The interaction of IFN-β with its receptor IFNAR1 (interferon α/β receptor subunit 1) is vital for host-protective anti-viral and anti-proliferative responses, but signaling via this interaction can be detrimental if dysregulated. Whereas it is established that IFNAR1 is an essential component of the IFNAR signaling complex, the key residues underpinning the IFN-β-IFNAR1 interaction are unknown. Guided by the crystal structure of the IFN-β-IFNAR1 complex, we used truncation variants and site-directed mutagenesis to investigate domains and residues enabling complexation of IFN-β to IFNAR1. We have identified an interface on IFNAR1-subdomain-3 that is differentially utilized by IFN-β and IFN-α for signal transduction. We used surface plasmon resonance and cell-based assays to investigate this important IFN-β binding interface that is centered on IFNAR1 residues Tyr240 and Tyr274 binding the C and N termini of the B and C helices of IFN-β, respectively. Using IFNAR1 and IFN-β variants, we show that this interface contributes significantly to the affinity of IFN-β for IFNAR1, its ability to activate STAT1, the expression of interferon stimulated genes, and ultimately to the anti-viral and anti-proliferative properties of IFN-β. These results identify a key interface created by IFNAR1 residues Tyr240 and Tyr274 interacting with IFN-β residues Phe63, Leu64, Glu77, Thr78, Val81, and Arg82 that underlie IFN-β-IFNAR1-mediated signaling and biological processes
Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells
Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5 h, 37 °C). Antigen solution structures, MAIT cell activation potencies (EC50 3–500 pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2 nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNγ, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation
Mucosa-associated invariant T cells are systemically depleted in simian immunodeficiency virus-infected rhesus macaques
Mucosa-associated invariant T (MAIT) cells contribute to host immune protection against a wide range of potential pathogens via the recognition of bacterial metabolites presented by the major histocompatibility complex class I-related molecule MR1. Although bacterial products translocate systemically in human immunodeficiency virus (HIV)-infected individuals and simian immunodeficiency virus (SIV)-infected Asian macaques, several studies have shown that MAIT cell frequencies actually decrease in peripheral blood during the course of HIV/SIV disease. However, the mechanisms underlying this proportional decline remain unclear. In this study, we characterized the phenotype, activation status, functionality, distribution, and clonotypic structure of MAIT cell populations in the peripheral blood, liver, mesenteric lymph nodes (MLNs), jejunum, and bronchoalveolar lavage (BAL) fluid of healthy and SIV-infected rhesus macaques (RMs). Low frequencies of MAIT cells were observed in the peripheral blood, MLNs, and BAL fluid of SIV-infected RMs. These numerical changes were coupled with increased proliferation and a highly public T cell receptor alpha (TCRα) repertoire in the MAIT cell compartment without redistribution to other anatomical sites. Collectively, our data show systemically decreased frequencies of MAIT cells likely attributable to enhanced turnover in SIV-infected RMs. This process may impair protective immunit
Structural insights into Clostridium perfringens delta toxin pore formation
Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins
Degenerate recognition of MHC class I molecules with Bw4 and Bw6 motifs by a killer cell Ig-like receptor 3DL expressed by macaque NK cells
The killer cell immunoglobulin-like receptors (KIRs) expressed on the surface of natural killer (NK) cells recognize specific major histocompatibility complex class I (MHC-I) molecules and regulate NK cell activities against pathogen-infected cells and neoplasia. In human immunodeficiency virus (HIV) infection, survival is linked to host KIR and MHC-I genotypes. In the simian immunodeficiency virus (SIV) macaque model, however, the role of NK cells is unclear due to the lack of information on KIR-MHC interactions. Here, we describe the first characterization of a KIR-MHC interaction in pig-tailed macaques (Macaca nemestrina). Initially, we identified three distinct subsets of macaque NK cells that stained ex vivo with macaque MHC-I tetramers loaded with SIV peptides. We then cloned cDNAs corresponding to 15 distinct KIR3D alleles. One of these, KIR049-4, was an inhibitory KIR3DL that bound MHC-I tetramers and prevented activation, degranulation and cytokine production by macaque NK cells after engagement with specific MHC-I molecules on the surface of target cells. Furthermore, KIR049-4 recognized a broad range of MHC-I molecules carrying not only the Bw4 motif but also Bw6 and non-Bw4/Bw6 motifs. This degenerate, yet peptide-dependent, MHC reactivity differs markedly from the fine specificity of human KIRs
Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity
Killer Ig-like receptors (KIRs) control the activation of human NK cells via interactions with peptide-laden HLAs. KIR3DL1 is a highly polymorphic inhibitory receptor that recognizes a diverse array of HLA molecules expressing the Bw4 epitope, a group with multiple polymorphisms incorporating variants within the Bw4 motif. Genetic studies suggest that KIR3DL1 variation has functional significance in several disease states, including HIV infection. However, owing to differences across KIR3DL1 allotypes, HLA-Bw4, and associated peptides, the mechanistic link with biological outcome remains unclear. In this study, we elucidated the impact of KIR3DL1 polymorphism on peptide-laden HLA recognition. Mutational analysis revealed that KIR residues involved in water-mediated contacts with the HLA-presented peptide influence peptide binding specificity. In particular, residue 282 (glutamate) in the D2 domain underpins the lack of tolerance of negatively charged C-terminal peptide residues. Allotypic KIR3DL1 variants, defined by neighboring residue 283, displayed differential sensitivities to HLA-bound peptide, including the variable HLA-B*57:01-restricted HIV-1 Gag-derived epitope TW10. Residue 283, which has undergone positive selection during the evolution of human KIRs, also played a central role in Bw4 subtype recognition by KIR3DL1. Collectively, our findings uncover a common molecular regulator that controls HLA and peptide discrimination without participating directly in peptide-laden HLA interactions. Furthermore, they provide insight into the mechanics of interaction and generate simple, easily assessed criteria for the definition of KIR3DL1 functional groupings that will be relevant in many clinical applications, including bone marrow transplantation
Recommended from our members
CD1a autoreactive T cells recognize natural skin oils that function as headless antigens
CD1a autoreactive T cells are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands, while preserving unliganded CD1a for testing lipids from tissues. CD1a released hundreds of ligands of two types. Inhibitory ligands were ubiquitous membrane lipids with polar headgroups, whereas stimulatory compounds were apolar oils. CD1a autoantigens naturally accumulate in epidermis and sebum, where they were identified as squalene and skin waxes. T cell activation by skin oils suggests that headless mini-antigens nest within CD1a and displace non-antigenic resident lipids with large head groups. Oily autoantigens naturally coat the skin's surface, pointing to a new mechanism of barrier immunity
Recognition of the Major Histocompatibility Complex (MHC) class Ib molecule H2-Q10 by the natural killer cell receptor Ly49C
Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 μm) than that observed between Ly49C and MHC-Ia (H-2Kb/H-2Dd, both ∼1 μm), and this recognition could be prevented by cis interactions with H-2K in situ. To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated β2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2Kb. Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2Kb possess similar energetic footprints focused around residues located within the Ly49C β4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules
- …
