3,812 research outputs found

    Momentum-dependent pseudogaps in the half-filled two-dimensional Hubbard model

    Full text link
    We compute unbiased spectral functions of the two-dimensional Hubbard model by extrapolating Green functions, obtained from determinantal quantum Monte Carlo simulations, to the thermodynamic and continuous time limits. Our results clearly resolve the pseudogap at weak to intermediate coupling, originating from a momentum selective opening of the charge gap. A characteristic pseudogap temperature T*, determined consistently from the spectra and from the momentum dependence of the imaginary-time Green functions, is found to match the dynamical mean-field critical temperature, below which antiferromagnetic fluctuations become dominant. Our results identify a regime where pseudogap physics is within reach of experiments with cold fermions in optical lattices.Comment: 10 pages, 13 figures; extended version to appear in Phys. Rev.

    Ionization of clusters in intense laser pulses through collective electron dynamics

    Full text link
    The motion of electrons and ions in medium-sized rare gas clusters (1000 atoms) exposed to intense laser pulses is studied microscopically by means of classical molecular dynamics using a hierarchical tree code. Pulse parameters for optimum ionization are found to be wavelength dependent. This resonant behavior is traced back to a collective electron oscillation inside the charged cluster. It is shown that this dynamics can be well described by a driven and damped harmonic oscillator allowing for a clear discrimination against other energy absorption mechanisms.Comment: 4 pages (4 figures

    Proton Decay from Excited States in Spherical Nuclei

    Get PDF
    Based on a single particle model which describes the time evolution of the wave function during tunneling across a one dimensional potential barrier we study the proton decay of 208^{208}Pb from excited states with non-vanishing angular momentum \ell. Several quantities of interest in this process like the decay rate λ\lambda, the period of oscillation ToscT_{osc}, the transient time ttrt_{tr}, the tunneling time ttunt_{tun} and the average value of the proton packet position rav r_{av} are computed and compared with the WKB results.Comment: 12 pages, 4 figure

    Collective and independent-particle motion in two-electron artificial atoms

    Full text link
    Investigations of the exactly solvable excitation spectra of two-electron quantum dots with a parabolic confinement, for different values of the parameter R_W expressing the relative magnitudes of the interelectron repulsion and the zero-point kinetic energy of the confined electrons, reveal for large R_W a remarkably well-developed ro-vibrational spectrum associated with formation of a linear trimeric rigid molecule composed of the two electrons and the infinitely heavy confining dot. This spectrum transforms to one characteristic of a "floppy" molecule for smaller values of R_W. The conditional probability distribution calculated for the exact two-electron wave functions allows for the identification of the ro-vibrational excitations as rotations and stretching/bending vibrations, and provides direct evidence pertaining to the formation of such molecules.Comment: Published version. Latex/Revtex, 5 pages with 2 postscript figures embedded in the text. For related papers, see http://www.prism.gatech.edu/~ph274c

    The totally asymmetric exclusion process with generalized update

    Full text link
    We consider the totally asymmetric exclusion process in discrete time with generalized updating rules. We introduce a control parameter into the interaction between particles. Two particular values of the parameter correspond to known parallel and sequential updates. In the whole range of its values the interaction varies from repulsive to attractive. In the latter case the particle flow demonstrates an apparent jamming tendency not typical for the known updates. We solve the master equation for NN particles on the infinite lattice by the Bethe ansatz. The non-stationary solution for arbitrary initial conditions is obtained in a closed determinant form.Comment: 11 pages, 3 figure

    Intermanifold similarities in partial photoionization cross sections of helium

    Get PDF
    Using the eigenchannel R-matrix method we calculate partial photoionization cross sections from the ground state of the helium atom for incident photon energies up to the N=9 manifold. The wide energy range covered by our calculations permits a thorough investigation of general patterns in the cross sections which were first discussed by Menzel and co-workers [Phys. Rev. A {\bf 54}, 2080 (1996)]. The existence of these patterns can easily be understood in terms of propensity rules for autoionization. As the photon energy is increased the regular patterns are locally interrupted by perturber states until they fade out indicating the progressive break-down of the propensity rules and the underlying approximate quantum numbers. We demonstrate that the destructive influence of isolated perturbers can be compensated with an energy-dependent quantum defect.Comment: 10 pages, 10 figures, replacement with some typos correcte

    Spurious oscillations from local self-interaction correction in high energy photoionization calculations for metal clusters

    Get PDF
    We find that for simple metal clusters a single-electron description of the ground state employing self-interaction correction (SIC) in the framework of local-density approximation strongly contaminates the high energy photoionization cross sections with spurious oscillations for a subshell containing node(s). This effect is shown connected to the unphysical structure that SIC generates in ensuing state-dependent radial potentials around a position where the respective orbital density attains nodal zero. Non-local Hartree-Fock that exactly eliminates the electron self-interaction is found entirely free from this effect. It is inferred that while SIC is largely unimportant in high photon-energies, any implementation of it within the local frame can induce unphysical oscillations in the high energy photospectra of metal clusters pointing to a general need for caution in choosing appropriate theoretical tools

    Dynamical stabilization of classical multi electron targets against autoionization

    Get PDF
    We demonstrate that a recently published quasiclassical M\oller type approach [Geyer and Rost 2002, J. Phys. B 35 1479] can be used to overcome the problem of autoionization, which arises in classical trajectory calculations for many electron targets. In this method the target is stabilized dynamically by a backward--forward propagation scheme. We illustrate this refocusing and present total cross sections for single and double ionization of helium by electron impact.Comment: LaTeX, 6 pages, 2 figures; submitted to J. Phys.

    Conserved Growth on Vicinal Surfaces

    Full text link
    A crystal surface which is miscut with respect to a high symmetry plane exhibits steps with a characteristic distance. It is argued that the continuum description of growth on such a surface, when desorption can be neglected, is given by the anisotropic version of the conserved KPZ equation (T. Sun, H. Guo, and M. Grant, Phys. Rev. A 40, 6763 (1989)) with non-conserved noise. A one--loop dynamical renormalization group calculation yields the values of the dynamical exponent and the roughness exponent which are shown to be the same as in the isotropic case. The results presented here should apply in particular to growth under conditions which are typical for molecular beam epitaxy.Comment: 10 pages, uses revte
    corecore