2,817 research outputs found
New poly(amino acid methacrylate) brush supports the formation of well-defined lipid membranes
A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼-10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm2 s-1, which are comparable to those observed for lipid bilayers on glass substrates
New Mechanics of Traumatic Brain Injury
The prediction and prevention of traumatic brain injury is a very important
aspect of preventive medical science. This paper proposes a new coupled
loading-rate hypothesis for the traumatic brain injury (TBI), which states that
the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an
impulsive loading that strikes the head in several coupled degrees-of-freedom
simultaneously. To show this, based on the previously defined covariant force
law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions
within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt
dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid
discontinuous deformations: translational dislocations and rotational
disclinations. Brain's dislocations and disclinations, caused by the
SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum
brain model.
Keywords: Traumatic brain injuries, coupled loading-rate hypothesis,
Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and
disclinationsComment: 18 pages, 1 figure, Late
Reviewing, indicating, and counting books for modern research evaluation systems
In this chapter, we focus on the specialists who have helped to improve the
conditions for book assessments in research evaluation exercises, with
empirically based data and insights supporting their greater integration. Our
review highlights the research carried out by four types of expert communities,
referred to as the monitors, the subject classifiers, the indexers and the
indicator constructionists. Many challenges lie ahead for scholars affiliated
with these communities, particularly the latter three. By acknowledging their
unique, yet interrelated roles, we show where the greatest potential is for
both quantitative and qualitative indicator advancements in book-inclusive
evaluation systems.Comment: Forthcoming in Glanzel, W., Moed, H.F., Schmoch U., Thelwall, M.
(2018). Springer Handbook of Science and Technology Indicators. Springer Some
corrections made in subsection 'Publisher prestige or quality
The SNAPSHOT study protocol : SNAcking, Physical activity, Self-regulation, and Heart rate Over Time
Peer reviewedPublisher PD
How are falls and fear of falling associated with objectively measured physical activity in a cohort of community-dwelling older men?
BACKGROUND: Falls affect approximately one third of community-dwelling older adults each year and have serious health and social consequences. Fear of falling (FOF) (lack of confidence in maintaining balance during normal activities) affects many older adults, irrespective of whether they have actually experienced falls. Both falls and fear of falls may result in restrictions of physical activity, which in turn have health consequences. To date the relation between (i) falls and (ii) fear of falling with physical activity have not been investigated using objectively measured activity data which permits examination of different intensities of activity and sedentary behaviour.
METHODS: Cross-sectional study of 1680 men aged 71-92 years recruited from primary care practices who were part of an on-going population-based cohort. Men reported falls history in previous 12 months, FOF, health status and demographic characteristics. Men wore a GT3x accelerometer over the hip for 7 days.
RESULTS: Among the 12% of men who had recurrent falls, daily activity levels were lower than among non-fallers; 942 (95% CI 503, 1381) fewer steps/day, 12(95% CI 2, 22) minutes less in light activity, 10(95% CI 5, 15) minutes less in moderate to vigorous PA [MVPA] and 22(95% CI 9, 35) minutes more in sedentary behaviour. 16% (n = 254) of men reported FOF, of whom 52% (n = 133) had fallen in the past year. Physical activity deficits were even greater in the men who reported that they were fearful of falling than in men who had fallen. Men who were fearful of falling took 1766(95% CI 1391, 2142) fewer steps/day than men who were not fearful, and spent 27(95% CI 18, 36) minutes less in light PA, 18(95% CI 13, 22) minutes less in MVPA, and 45(95% CI 34, 56) minutes more in sedentary behaviour. The significant differences in activity levels between (i) fallers and non-fallers and (ii) men who were fearful of falling or not fearful, were mediated by similar variables; lower exercise self-efficacy, fewer excursions from home and more mobility difficulties.
CONCLUSIONS: Falls and in particular fear of falling are important barriers to older people gaining health benefits of walking and MVPA. Future studies should assess the longitudinal associations between falls and physical activity
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.
Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
