33,159 research outputs found
Electroweak Radiative Corrections to Off-Shell W-Pair Production
We briefly describe the RacoonWW approach to calculate radiative corrections
to e+ e- -> W W -> 4 fermions and present numerical results for the total
W-pair production cross section at LEP2.Comment: 3 pages, 2 figures, talk given at the DPF2000 meeting, Columbus, OH,
August 9-12, 200
W-pair production at future e+e- colliders: precise predictions from RACOONWW
We present numerical results for total cross sections and various
distributions for e+e- --> WW --> 4f(+gamma) at a future 500GeV linear
collider, obtained from the Monte Carlo generator RACOONWW. This generator is
the first one that includes O(alpha) electroweak radiative corrections in the
double-pole approximation completely. Owing to their large size the corrections
are of great phenomenological importance.Comment: 11 pages, latex, 10 postscript file
Electric potential distributions at the interface between plasmasheet clouds
At the interface between two plasma clouds with different densities, temperatures, and/or bulk velocities, there are large charge separation electric fields which can be modeled in the framework of a collisionless theory for tangential discontinuities. Two different classes of layers were identified: the first one corresponds to (stable) ion layers which are thicker than one ion Lamor radius; the second one corresponds to (unstable) electron layers which are only a few electron Larmor radii thick. It is suggested that these thin electron layers with large electric potential gradients (up to 400 mV/m) are the regions where large-amplitude electrostatic waves are spontaneously generated. These waves scatter the pitch angles of the ambient plasmasheet electron into the atmospheric loss cone. The unstable electron layers can therefore be considered as the seat of strong pitch angle scattering for the primary auroral electrons
Probing anomalous quartic gauge-boson couplings via e+e- --> 4fermions+gamma
All lowest-order amplitudes for e+e- --> 4f+gamma are calculated including
five anomalous quartic gauge-boson couplings that are allowed by
electromagnetic gauge invariance and the custodial SU(2)_c symmetry. Three of
these anomalous couplings correspond to the operators L_0, L_c, and L_n that
have been constrained by the LEP collaborations in WWgamma production. The
anomalous couplings are incorporated in the Monte Carlo generator RACOONWW.
Moreover, for the processes e+e- --> 4f+gamma RACOONWW is improved upon
including leading universal electroweak corrections such as initial-state
radiation. The discussion of numerical results illustrates the size of the
leading corrections as well as the impact of the anomalous quartic couplings
for LEP2 energies and at 500GeV.Comment: 27 pages, latex, 42 postscript files, some misprints correcte
Di-boson Production beyond NLO QCD and Anomalous Couplings
In these proceedings, we review results for several di-boson production
processes beyond NLO QCD at high transverse momenta using the VBFNLO
Monte-Carlo program together with the LOOPSIM method. Additionally, we show for
the WZ production process how higher order QCD corrections can resemble
anomalous coupling effects.Comment: Conference Proceedings:C15-05-25.
Vertical quantum wire realized with double cleaved-edge overgrowth
A quantum wire is fabricated on (001)-GaAs at the intersection of two
overgrown cleaves. The wire is contacted at each end to n+ GaAs layers via
two-dimensional (2D) leads. A sidegate controls the density of the wire
revealing conductance quantization. The step height is strongly reduced from
2e^2/h due to the 2D-lead series resistance. We characterize the 2D density and
mobility for both cleave facets with four-point measurements. The density on
the first facet is modulated by the substrate potential, depleting a 2um wide
strip that defines the wire length. Micro-photoluminescence shows an extra peak
consistent with 1D electron states at the corner.Comment: 4 pages, 4 figure
- …
