1,116 research outputs found
Design: One, but in different forms
This overview paper defends an augmented cognitively oriented generic-design
hypothesis: there are both significant similarities between the design
activities implemented in different situations and crucial differences between
these and other cognitive activities; yet, characteristics of a design
situation (related to the design process, the designers, and the artefact)
introduce specificities in the corresponding cognitive activities and
structures that are used, and in the resulting designs. We thus augment the
classical generic-design hypothesis with that of different forms of designing.
We review the data available in the cognitive design research literature and
propose a series of candidates underlying such forms of design, outlining a
number of directions requiring further elaboration
Influence of boundaries on pattern selection in through-flow
The problem of pattern selection in absolutely unstable open flow systems is
investigated by considering the example of Rayleigh-B\'{e}nard convection. The
spatiotemporal structure of convection rolls propagating downstream in an
externally imposed flow is determined for six different inlet/outlet boundary
conditions. Results are obtained by numerical simulations of the Navier-Stokes
equations and by comparison with the corresponding Ginzburg-Landau amplitude
equation. A unique selection process is observed being a function of the
control parameters and the boundary conditions but independent of the history
and the system length. The problem can be formulated in terms of a nonlinear
eigen/boundary value problem where the frequency of the propagating pattern is
the eigenvalue. PACS: 47.54.+r, 47.20.Bp, 47.27.Te, 47.20.KyComment: 8 pages, 5 Postscript figures, Physica D 97, 253-263 (1996
Pattern selection as a nonlinear eigenvalue problem
A unique pattern selection in the absolutely unstable regime of driven,
nonlinear, open-flow systems is reviewed. It has recently been found in
numerical simulations of propagating vortex structures occuring in
Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed
through-flow. Unlike the stationary patterns in systems without through-flow
the spatiotemporal structures of propagating vortices are independent of
parameter history, initial conditions, and system length. They do, however,
depend on the boundary conditions in addition to the driving rate and the
through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation
elucidates how the pattern selection can be described by a nonlinear eigenvalue
problem with the frequency being the eigenvalue. Approaching the border between
absolute and convective instability the eigenvalue problem becomes effectively
linear and the selection mechanism approaches that of linear front propagation.
PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 18 pages in Postsript format including 5 figures, to appear in:
Lecture Notes in Physics, "Nonlinear Physics of Complex Sytems -- Current
Status and Future Trends", Eds. J. Parisi, S. C. Mueller, and W. Zimmermann
(Springer, Berlin, 1996
Self-tuning experience weighted attraction learning in games
Self-tuning experience weighted attraction (EWA) is a one-parameter theory of learning in
games. It addresses a criticism that an earlier model (EWA) has too many parameters, by
fixing some parameters at plausible values and replacing others with functions of experience
so that they no longer need to be estimated. Consequently, it is econometrically simpler
than the popular weighted fictitious play and reinforcement learning models.
The functions of experience which replace free parameters “self-tune” over time, adjusting
in a way that selects a sensible learning rule to capture subjects’ choice dynamics. For
instance, the self-tuning EWA model can turn from a weighted fictitious play into an averaging
reinforcement learning as subjects equilibrate and learn to ignore inferior foregone
payoffs. The theory was tested on seven different games, and compared to the earlier parametric
EWA model and a one-parameter stochastic equilibrium theory (QRE). Self-tuning
EWA does as well as EWA in predicting behavior in new games, even though it has fewer
parameters, and fits reliably better than the QRE equilibrium benchmark
Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow
A unique pattern selection in the absolutely unstable regime of a driven,
nonlinear, open-flow system is analyzed: The spatiotemporal structures of
rotationally symmetric vortices that propagate downstream in the annulus of the
rotating Taylor-Couette system due to an externally imposed axial through-flow
are investigated for two different axial boundary conditions at the in- and
outlet. Unlike the stationary patterns in systems without through-flow the
spatiotemporal structures of propagating vortices are independent of parameter
history, initial conditions, and system's length. They do, however, depend on
the axial boundary conditions, the driving rate of the inner cylinder and the
through-flow rate. Our analysis of the amplitude equation shows that the
pattern selection can be described by a nonlinear eigenvalue problem with the
frequency being the eigenvalue. Approaching the border between absolute and
convective instability the eigenvalue problem becomes effectively linear and
the selection mechanism approaches that one of linear front propagation.
PACS:47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 15 pages (LateX-file), 8 figures (Postscript
Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation
Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG
switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating – a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility
High-resolution spatial modelling of greenhouse gas emissions from land-use change to energy crops in the United Kingdom
Funded by Energy Technologies Institute EPSRC-Supergen. Grant Number: EP/M013200/1Peer reviewedPublisher PD
Recommended from our members
Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5
The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA
Interferon-ß regulates the production of IL-10 by toll-like receptor-activated microglia
Pattern recognition receptors, such as toll-like receptors (TLRs), perceive tissue alterations and initiate local innate immune responses. Microglia, the resident macrophages of the brain, encode TLRs which primary role is to protect the tissue integrity. However, deregulated activation of TLRs in microglia may lead to chronic neurodegeneration. This double role of microglial responses is often reported in immune-driven neurologic diseases, as in multiple sclerosis (MS). Consequently, strategies to manipulate microglia inflammatory responses may help to ameliorate disease progression. In this context, the anti-inflammatory cytokine interleukin (IL)-10 appears as an attractive target. In this study, we investigated how activation of microglia by TLRs with distinct roles in MS impacts on IL-10 production. We found that activation of TLR2, TLR4, and TLR9 induced the production of IL-10 to a greater extent than activation of TLR3. This was surprising as both TLR3 and IL-10 play protective roles in animal models of MS. Interestingly, combination of TLR3 triggering with the other TLRs, enhanced IL-10 through the modulation of its transcription, via interferon (IFN)-beta, but independently of IL-27. Thus, in addition to the modulation of inflammatory responses of the periphery described for the axis TLR3/IFN-beta, we now report a direct modulation of microglial responses. We further show that the presence of IFN-gamma in the microenvironment abrogated the modulation of IL-10 by TLR3, whereas that of IL-17 had no effect. Considering the therapeutic application of IFN-beta in MS, our study bears important implications for the understanding of the cytokine network regulating microglia responses in this setting.Portuguese Foundation for Science and Technology (FCT), Grant/Award Numbers: SFRH/BD/88081/2012 and SFRH/BPD/72710/2010; FEDER - Competitiveness Factors Operational Programme (COMPETE), Grant/Award Numbers: POCI-01-0145-FEDER-007038 and NORTE-01-0145-FEDER-000013; Norte Portugal Regional Operational Programme, PORTUGAL 2020, European Regional Development Fund (ERDF), Grant/Award Number: NORTE 2020; FCT-ANR, Grant/Award Number: FCT-ANR/BIM-MEC/0007/2013; FEDER - Fundo Europeu de Desenvolvimento Regional; COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020; Institute for Research and Innovation in Health Sciences, Grant/Award Number: POCI-01-0145-FEDER-007274info:eu-repo/semantics/publishedVersio
Reorientation-effect measurement of the first 2+ state in 12C : Confirmation of oblate deformation
A Coulomb-excitation reorientation-effect measurement using the TIGRESS γ−ray spectrometer at the TRIUMF/ISAC II facility has permitted the determination of the 〈21 +‖E2ˆ‖21 +〉 diagonal matrix element in 12C from particle−γ coincidence data and state-of-the-art no-core shell model calculations of the nuclear polarizability. The nuclear polarizability for the ground and first-excited (21 +) states in 12C have been calculated using chiral NN N4LO500 and NN+3NF350 interactions, which show convergence and agreement with photo-absorption cross-section data. Predictions show a change in the nuclear polarizability with a substantial increase between the ground state and first excited 21 + state at 4.439 MeV. The polarizability of the 21 + state is introduced into the current and previous Coulomb-excitation reorientation-effect analyses of 12C. Spectroscopic quadrupole moments of QS(21 +)=+0.053(44) eb and QS(21 +)=+0.08(3) eb are determined, respectively, yielding a weighted average of QS(21 +)=+0.071(25) eb, in agreement with recent ab initio calculations. The present measurement confirms that the 21 + state of 12C is oblate and emphasizes the important role played by the nuclear polarizability in Coulomb-excitation studies of light nuclei
- …
