890 research outputs found

    Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative

    Get PDF
    Despite the many proposed advantages related to nanotechnology, there are increasing concerns as to the potential adverse human health and environmental effects that the production of, and subsequent exposure to nanoparticles (NPs) might pose. In regard to human health, these concerns are founded upon the plethora of knowledge gained from research relating to the effects observed following exposure to environmental air pollution. It is known that increased exposure to environmental air pollution can cause reduced respiratory health, as well as exacerbate pre-existing conditions such as cardiovascular disease and chronic obstructive pulmonary disease. Such disease states have also been associated with exposure to the NP component contained within environmental air pollution, raising concerns as to the effects of NP exposure. It is not only exposure to accidentally produced NPs however, which should be approached with caution. Over the past decades, NPs have been specifically engineered for a wide range of consumer, industrial and technological applications. Due to the inevitable exposure of NPs to humans, owing to their use in such applications, it is therefore imperative that an understanding of how NPs interact with the human body is gained. In vivo research poses a beneficial model for gaining immediate and direct knowledge of human exposure to such xenobiotics. This research outlook however, has numerous limitations. Increased research using in vitro models has therefore been performed, as these models provide an inexpensive and high-throughput alternative to in vivo research strategies. Despite such advantages, there are also various restrictions in regard to in vitro research. Therefore, the aim of this review, in addition to providing a short perspective upon the field of nanotoxicology, is to discuss (1) the advantages and disadvantages of in vitro research and (2) how in vitro research may provide essential information pertaining to the human health risks posed by NP exposur

    Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms

    Get PDF
    Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters

    Nanofibers: Friend or Foe?

    Get PDF
    Since the early 1990s nanofibers, particularly those of a carbonaceous content [1] have received heightened interest due to their advantageous physico-chemical characteristics (e.g., high strength, stiffness, semi-conductor, increased thermal conductivity and one of the highest Young’s modulus [2]).[...

    Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: Endothelial versus epithelial features

    Get PDF
    Summary: ECV 304 cells reported as originating from human umbilical vein endothelial cells by spontaneous transformation have been used as a model cell line for endothelia over the last decade. Recently, deoxyribonucleic acid fingerprinting revealed an identical genotype for ECV 304 and T24 cells (urinary bladder carcinoma cell line). In order to resolve the apparent discrepancy between the identical genotype and the fact that ECV304 cells phenotypically show important endothelial characteristics, a comparative study was performed. Immortalized porcine brain microvascular endothelial cells/C1-2, and Madin Darby canine kidney cells were included as typical endothelial and epithelial cells, respectively. Various methods, such as confocal laser scanning microscopy, Western blot, and protein activity tests, were used to study the cell lines. ECV304 and T24 cells differ in criteria, such as growth behavior, cytoarchitecture, tight junction arrangement, transmembrane electrical resistance, and activity of γ-glutamyltransferase. Several endothelial markers (von Willebrand factor, uptake of low-density lipoprotein, vimentin) could clearly be identified in ECV304, but not in T24 cells. Desmoglein and cytokeratin, both known as epithelial markers, were found in ECV304 as well as T24 cells. However, differences were found for the two cell lines with respect to the type of cytokeratin: in ECV304 cells mainly cytokeratin 18 (45 kDa) is found, whereas in T24 cells cytokeratin 8 (52 kDa) is predominant. As we could demonstrate, the ECV 304 cell line exposes many endothelial features which, in view of the scarcity of suitable endothelial cell lines, still make it an attractive in vitro model for endotheli

    In vitro approaches to assess the hazard of nanomaterials

    Get PDF
    The rapid development of engineered nanomaterials demands for a fast and reliable assessment of their health hazard potential. A plethora of experimental approaches have been developed and are widely employed in conventional toxicological approaches. However, the specific properties of nanomaterials such as smaller size but larger surface area, and high catalytic reactivity and distinctive optical properties compared to their respective bulk entities, often disable a straightforward use of established in vitro approaches. Herein, we provide an overview of the current state-of the art nanomaterial hazard assessment strategies using in vitro approaches. This perspective has been developed based on a thorough review of over 200 studies employing such methods to assess the biological response upon exposure to a diverse array of nanomaterials. The majority of the studies under review has been, but not limited to, engaged in the European 7th Framework Programme for Research and Technological Development and published in the last five years. Based on the most widely used methods and/or the most relevant biological endpoints, we have provided some general recommendations on the use of the selected approaches which would the most closely mimic realistic exposure scenarios as well as enabling to yield fast, reliable and reproducible data on the nanomaterial-cell response in vitro. In addition, the applicability of the approaches to translate in vitro outcomes to leverage those of in vivo studies has been proposed. It is finally suggested that an improved comprehension of the approaches with its limitations used for nanomaterials' hazard assessment in vitro will improve the interpretation of the existing nanotoxicological data as well as underline the basic principles in understanding interactions of engineered nanomaterials at a cellular level; this all is imperative for their safe-by- design strategies, and should also enable subsequent regulatory approvals

    Nanoparticle–cell interaction: a cell mechanics perspective

    Get PDF
    Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology
    corecore