1,009 research outputs found
GLObal Backscatter Experiment (GLOBE) Pacific survey mission
NASA conducted the GLObal Backscatter Experiment (GLOBE) Survey Mission over the near coastal and remote Pacific Ocean during 6 to 30 Nov. 1989 (GLOBE 1) and 13 May to 5 Jun. 1990 (GLOBE 2). These missions studied the optical, physical, and chemical properties of atmospheric aerosols. Particular emphasis was given to the magnitude and spatial variability of aerosol backscatter coefficients at mid-infrared wavelengths, and to the remote middle and upper troposphere, where these aerosol properties are poorly understood. Survey instruments were selected to provide either direct beta measurements at the key wavelengths, empirical links with long term or global scale aerosol climatologies, or aerosol microphysics data required to model any of these quantities. The survey deployment included both long distance 6 to 8 hour transit flights and detailed 4 to 6 hour local flights. Several general features were observed from preliminary Survey data analyses. Validation and intercomparison results have shown good agreement, usually better than a factor of two. Atmospheric aerosols frequently exhibited a three layer vertical structure, with (1) high and fairly uniform backscatter in the shallow cloud capped marine boundary layer; (2) moderate and highly variable backscatter in a deeper overlaying cloud pumped layer; and (3) low, regionally uniform, but seasonally and latitudinally variable backscatter in the middle and upper troposphere. The survey missions represent two isolated snapshots of a small portion of the global aerosol system. Consequently, Survey results can best be understood by synthesizing them with the more comprehensive GLOBE data base, which is being compiled at NASA-Marshall
Aerosol chemistry in GLOBE
This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE)
CO2 lidar backscatter experiment
The Aerosol/Lidar Science Group of the Remote Sensing Branch engages in experimental and theoretical studies of atmospheric aerosol scattering and atmospheric dynamics, emphasizing Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts by in-house personnel, coordinated with similar efforts by university and government institutional researchers. The primary focus of activities related to understanding aerosol scattering is the GLObal Backscatter Experiment (GLOBE) program. GLOBE was initiated by NASA in 1986 to support the engineering design, performance simulation, and science planning for the prospective NASA Laser Atmospheric Wind Sounder (LAWS). The most important GLOBE scientific result has been identified of a background aerosol mode with a surprisingly uniform backscatter mixing ratio (backscatter normalized by air density) throughout a deep tropospheric layer. The backscatter magnitude of the background mode evident from the MSFC CW lidar measurements is remarkably similar to that evident from ground-based backscatter profile climatologies obtained by JPL in Pasadena CA, NOAA/WPL in Boulder CO, and by the Royal Signals and Radar Establishment in the United Kingdom. Similar values for the background mode have been inferred from the conversion of in situ aerosol microphysical measurements to backscatter using Mie theory. Little seasonal or hemispheric variation is evident in the survey mission data, as opposed to large variation for clouds, aerosol plums, and the marine boundary layer. Additional features include: localized aerosol residues from dissipated clouds, occasional regions having mass concentrations of nanograms per cubic meter and very low backscatter, and aerosol plumes extending thousands of kilometers and several kilometers deep. Preliminary comparison with meteorological observations thus far indicate correlation between backscatter and water vapor under high humidity conditions. Limited intercomparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) limb extinction sounder shows differences in the troposphere, however, it should be noted that in general SAGE measurements have not yet been validated in the troposphere
Atmospheric aerosol and Doppler lidar studies
Experimental and theoretical studies were performed of atmospheric aerosol backscatter and atmospheric dynamics with Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts. The primary focus of activities related to understanding aerosol backscatter is the GLObal Backscatter Experiment (GLOBE) program. GLOBE is a multi-element effort designed toward developing a global aerosol model to describe tropospheric clean background backscatter conditions that Laser Atmospheric Wind Sounder (LAWS) is likely to encounter. Two survey missions were designed and flown in the NASA DC-8 in November 1989 and May to June 1990 over the remote Pacific Ocean, a region where backscatter values are low and where LAWS wind measurements could make a major contribution. The instrument complement consisted of pulsed and continuous-wave (CW) CO2 gas and solid state lidars measuring aerosol backscatter, optical particle counters measuring aerosol concentration, size distribution, and chemical composition, a filter/impactor system collecting aerosol samples for subsequent analysis, and integrating nephelometers measuring visible scattering coefficients. The GLOBE instrument package and survey missions were carefully planned to achieve complementary measurements under clean background backscatter conditions
The role of hydrogen in room-temperature ferromagnetism at graphite surfaces
We present a x-ray dichroism study of graphite surfaces that addresses the
origin and magnitude of ferromagnetism in metal-free carbon. We find that, in
addition to carbon states, also hydrogen-mediated electronic states
exhibit a net spin polarization with significant magnetic remanence at room
temperature. The observed magnetism is restricted to the top 10 nm of
the irradiated sample where the actual magnetization reaches emu/g
at room temperature. We prove that the ferromagnetism found in metal-free
untreated graphite is intrinsic and has a similar origin as the one found in
proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic
Proton-induced magnetic order in carbon: SQUID measurements
In this work we have studied systematically the changes in the magnetic
behavior of highly oriented pyrolytic graphite (HOPG) samples after proton
irradiation in the MeV energy range. Superconducting quantum interferometer
device (SQUID) results obtained from samples with thousands of localized spots
of micrometer size as well on samples irradiated with a broad beam confirm
previously reported results. Both, the para- and ferromagnetic contributions
depend strongly on the irradiation details. The results indicate that the
magnetic moment at saturation of spots of micrometer size is of the order of
emu.Comment: Invited contribution at ICACS2006 to be published in Nucl. Instr. and
Meth. B. 8 pages and 6 figure
07081 Abstracts Collection --- End-User Software Engineering
From 18.01.07 to 23.02.07, the Dagstuhl Seminar 07081 ``End-User Software Engineering\u27\u27 was held in the International Conference and Research Center (IBFI),
Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
Fokker-Planck Equation for Boltzmann-type and Active Particles: transfer probability approach
Fokker-Planck equation with the velocity-dependent coefficients is considered
for various isotropic systems on the basis of probability transition (PT)
approach. This method provides the self-consistent and universal description of
friction and diffusion for Brownian particles. Renormalization of the friction
coefficient is shown to occur for two dimensional (2-D) and three dimensional
(3-D) cases, due to the tensorial character of diffusion. The specific forms of
PT are calculated for the Boltzmann-type of collisions and for the
absorption-type of collisions (the later are typical for dusty plasmas and some
other systems). Validity of the Einstein's relation for the Boltzmann-type
collisions is analyzed for the velocity-dependent friction and diffusion
coefficients. For the Boltzmann-type collisions in the region of very high
grain velocity as well as it is always for non-Boltzmann collisions, such as,
e.g., absorption collisions, the Einstein relation is violated, although some
other relations (determined by the structure of PT) can exist. The generalized
friction force is investigated in dusty plasma in the framework of the PT
approach. The relation between this force, negative collecting friction force
and scattering and collecting drag forces is established.+AFwAXA- The concept
of probability transition is used to describe motion of active particles in an
ambient medium. On basis of the physical arguments the PT for a simple model of
the active particle is constructed and the coefficients of the relevant
Fokker-Planck equation are found. The stationary solution of this equation is
typical for the simplest self-organized molecular machines.+AFwAXA- PACS
number(s): 52.27.Lw, 52.20.Hv, 52.25.Fi, 82.70.-yComment: 18 page
Architecture, Design, and Implementation of a Rapidly Prototyped Virtual Environment for a Military Spaceplane
The new Global Engagement vision places increased emphasis on the Air Force\u27s ability to control and exploit space. A military spaceplane combining reliable access to space, high operational tempos, and multi-mission capabilities is in conceptual stages of development. Virtual environment technology provides an opportunity to investigate system requirements and unconventional interface paradigms for this unique vehicle. A virtual environment architecture and design based on support for a rapid prototyping development process, separation of concerns, and user interface development is presented. The rapid prototyping process allowed management of changing requirements via an evolutionary approach to implementation. Separation of the activities performed by the virtual environment into classes enabled high performance through computational distribution, prevented modifications from rippling through the system and impeding development, and promoted reuse of computation and geometric models. A technique was developed to reduce the flimmer induced by the large spatial extent of the virtual environment. The architecture succeeded in providing a flexible framework for the AFIT Virtual Spaceplane. The Virtual Spaceplane is a large-scale virtual environment within which an immersed user commands a military spaceplane through atmospheric and orbital regimes to complete several simulated missions via an unconventional virtual interface
- …
