670 research outputs found

    Front motion for phase transitions in systems with memory

    Full text link
    We consider the Allen-Cahn equations with memory (a partial integro-differential convolution equation). The prototype kernels are exponentially decreasing functions of time and they reduce the integrodifferential equation to a hyperbolic one, the damped Klein-Gordon equation. By means of a formal asymptotic analysis we show that to the leading order and under suitable assumptions on the kernels, the integro-differential equation behave like a hyperbolic partial differential equation obtained by considering prototype kernels: the evolution of fronts is governed by the extended, damped Born-Infeld equation. We also apply our method to a system of partial integro-differential equations which generalize the classical phase field equations with a non-conserved order parameter and describe the process of phase transitions where memory effects are present

    Introduction to focus issue: Mixed mode oscillations: Experiment, computation, and analysis

    Get PDF
    Mixed mode oscillations (MMOs) occur when a dynamical system switches between fast and slow motion and small and large amplitude. MMOs appear in a variety of systems in nature, and may be simple or complex. This focus issue presents a series of articles on theoretical, numerical, and experimental aspects of MMOs. The applications cover physical, chemical, and biological systems. © 2008 American Institute of Physics

    Anomalous Dynamics of Translocation

    Full text link
    We study the dynamics of the passage of a polymer through a membrane pore (translocation), focusing on the scaling properties with the number of monomers NN. The natural coordinate for translocation is the number of monomers on one side of the hole at a given time. Commonly used models which assume Brownian dynamics for this variable predict a mean (unforced) passage time τ\tau that scales as N2N^2, even in the presence of an entropic barrier. However, the time it takes for a free polymer to diffuse a distance of the order of its radius by Rouse dynamics scales with an exponent larger than 2, and this should provide a lower bound to the translocation time. To resolve this discrepancy, we perform numerical simulations with Rouse dynamics for both phantom (in space dimensions d=1d=1 and 2), and self-avoiding (in d=2d=2) chains. The results indicate that for large NN, translocation times scale in the same manner as diffusion times, but with a larger prefactor that depends on the size of the hole. Such scaling implies anomalous dynamics for the translocation process. In particular, the fluctuations in the monomer number at the hole are predicted to be non-diffusive at short times, while the average pulling velocity of the polymer in the presence of a chemical potential difference is predicted to depend on NN.Comment: 9 pages, 9 figures. Submitted to Physical Review

    Anomalous Dynamics of Forced Translocation

    Full text link
    We consider the passage of long polymers of length N through a hole in a membrane. If the process is slow, it is in principle possible to focus on the dynamics of the number of monomers s on one side of the membrane, assuming that the two segments are in equilibrium. The dynamics of s(t) in such a limit would be diffusive, with a mean translocation time scaling as N^2 in the absence of a force, and proportional to N when a force is applied. We demonstrate that the assumption of equilibrium must break down for sufficiently long polymers (more easily when forced), and provide lower bounds for the translocation time by comparison to unimpeded motion of the polymer. These lower bounds exceed the time scales calculated on the basis of equilibrium, and point to anomalous (sub-diffusive) character of translocation dynamics. This is explicitly verified by numerical simulations of the unforced translocation of a self-avoiding polymer. Forced translocation times are shown to strongly depend on the method by which the force is applied. In particular, pulling the polymer by the end leads to much longer times than when a chemical potential difference is applied across the membrane. The bounds in these cases grow as N^2 and N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of the radius of gyration to N. Our simulations demonstrate that the actual translocation times scale in the same manner as the bounds, although influenced by strong finite size effects which persist even for the longest polymers that we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure

    Bartonella species detection in captive, stranded and free-ranging cetaceans

    Get PDF
    We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern

    Prolonged maternal separation induces undernutrition and systemic inflammation with disrupted hippocampal development in mice

    Get PDF
    Objective: Prolonged maternal separation (PMS) in the first 2 wk of life has been associated with poor growth with lasting effects in brain structure and function. This study aimed to investigate whether PMS-induced undernutrition could cause systemic inflammation and changes in nutrition-related hormonal levels, affecting hippocampal structure and neurotransmission in C57BL/6J suckling mice. Methods: This study assessed mouse growth parameters coupled with insulin-like growth factor-1 (IGF-1) serum levels. In addition, leptin, adiponectin, and corticosterone serum levels were measured following PMS. Hippocampal stereology and the amino acid levels were also assessed. Furthermore, we measured myelin basic protein and synapthophysin (SYN) expression in the overall brain tissue and hippocampal SYN immunolabeling. For behavioral tests, we analyzed the ontogeny of selected neonatal reflexes. PMS was induced by separating half the pups in each litter from their lactating dams for defined periods each day (4 h on day 1, 8 h on day 2, and 12 h thereafter). A total of 67 suckling pups were used in this study. Results: PMS induced significant slowdown in weight gain and growth impairment. Significant reductions in serum leptin and IGF-1 levels were found following PMS. Total CA3 area and volume were reduced, specifically affecting the pyramidal layer in PMS mice. CA1 pyramidal layer area was also reduced. Overall hippocampal SYN immunolabeling was lower, especially in CA3 field and dentate gyrus. Furthermore, PMS reduced hippocampal aspartate, glutamate, and gammaaminobutyric acid levels, as compared with unseparated controls. Conclusion: These findings suggest that PMS causes significant growth deficits and alterations in hippocampal morphology and neurotransmission.This work was supported in part by National Institutes of Health (NIH) research grant 5R01HD053131, funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the NIH Office of Dietary Supplements, and Brazilian grants from CNPq and CAPES (Grant # RO1 HD053131). The authors would like to thank Dr. Patricia Foley for veterinarian technical support and Dr. Jose Paulo Andrade for the excellent comments and suggestions to improve this manuscript. N.S. contributed with the stereological studies. I.L.F. and R.B.O. contributed with the behavioral studies. I.L.F., R.B.O., and R.L.G. contributed with the study design, study analysis, and manuscript preparation. G.A.M. and P.B.F. contributed with neurochemical brain analyses. J.I.A.L. and G.M.A. contributed with hormonal and CRP serum analyses. D.G.C., K.M.C., and R.S.R. contributed with animal experimentation and data collection

    Cognitive robotics in a soccer game domain: a proposal for the e-league competition

    Get PDF
    In this work, we will discuss the design of a team of robots to play soccer at RoboCup E-League. This task is being carried out in the Cognitive Robotics group of the Laboratory of Research and Development in Artificial Intellgence (LIDIA), Department of Computer Science and Engineering, Universidad Nacional del Sur. The RoboCup competition provides a great opportunity to develop a multi-agent system in which we can test and apply new ideas and results. In the following sections, we will briefly describe the league in which we will participate, and our proposal for the implementation of a team.Eje: Inteligencia artificial distribuida, aspectos teóricos de la inteligencia artificial y teoría de computaciónRed de Universidades con Carreras en Informática (RedUNCI

    Cognitive robotics in a soccer game domain: a proposal for the e-league competition

    Get PDF
    In this work, we will discuss the design of a team of robots to play soccer at RoboCup E-League. This task is being carried out in the Cognitive Robotics group of the Laboratory of Research and Development in Artificial Intellgence (LIDIA), Department of Computer Science and Engineering, Universidad Nacional del Sur. The RoboCup competition provides a great opportunity to develop a multi-agent system in which we can test and apply new ideas and results. In the following sections, we will briefly describe the league in which we will participate, and our proposal for the implementation of a team.Eje: Inteligencia artificial distribuida, aspectos teóricos de la inteligencia artificial y teoría de computaciónRed de Universidades con Carreras en Informática (RedUNCI

    The ability of thiourea to scavenge hydrogen peroxide and hydroxyl radicals during the intra-coronal bleaching of bloodstained root-filled teeth

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Background: Hydrogen peroxide, an agent used in the intra-coronal bleaching of root-filled teeth for over a century, has been shown to diffuse from the pulp chamber to the outer root surface. Furthermore, it has been demonstrated that destructive hydroxyl radicals, the by-products of the bleaching process, have been detected on the external root surface. The control of such diffusion may be of importance in minimizing the risk of invasive cervical resorption (ICR) which has been linked to intra-coronal bleaching of discoloured root-filled teeth using hydrogen peroxide. The aims of the present in vitro study are to quantify the diffusion of hydrogen peroxide and hydroxyl radicals to the outer root surface following intra-coronal bleaching, and to evaluate the ability of thiourea incorporated into the bleaching protocol to scavenge residual hydrogen peroxide and hydroxyl radicals. Methods: Thirty-five single rooted premolar teeth with intact cementum at the cemento-enamel junction were used in this project. Thirty teeth were stained with red blood cells and root-filled with gutta-percha and AH26. The five unstained teeth were root-filled and constituted a negative control (Group 1). The stained teeth were divided equally into the following experimental groups and subjected to various intra-coronal bleaching regimes: Group 2 – ‘walking bleach’ with 20μl 30 per cent w/w hydrogen peroxide; Group 3 – 20μl 30 per cent w/w hydrogen peroxide and thermocatalytically activated; Group 4 – 20μl acidified thiourea; Group 5 – 20μl acidified thiourea and 20μl 30 per cent w/w hydrogen peroxide; Group 6 – 20μl acidified thiourea and 20μl one per cent sodium hypochlorite; Group 7 – 20μl acidified thiourea, 20μl one per cent sodium hypochlorite and 20μl 30 per cent w/w hydrogen peroxide. The reaction products of the bleaching process were quantified at the outer root surface using high performance liquid chromatography and electrochemical detection (HPLC-ECD).Results: Results showed that hydrogen peroxide used alone in Groups 2 and 3 was able to be detected at the outer root surface in 100 per cent of the samples, and that the presence of the hydroxyl radical generated in both groups was detected in equal amounts (P<0.05). When thiourea was incorporated into the bleaching protocols in Groups 5–7, it was shown to scavenge both hydrogen peroxide and hydroxyl radicals to a significant degree (P<0.05). Conclusions: Acidulated thiourea is an effective scavenger of residual hydrogen peroxide and hydroxyl radicals generated during the intra-coronal bleaching of bloodstained root-filled teeth.DS Farmer, P Burcham, PD Mari
    corecore