19 research outputs found

    Propagating spin modes in canonical quantum gravity

    Get PDF
    One of the main results in canonical quantum gravity is the introduction of spin network states as a basis on the space of kinematical states. To arrive at the physical state space of the theory though we need to understand the dynamics of the quantum gravitational states. To this aim we study a model in which we allow for the spins, labeling the edges of spin networks, to change according to simple rules. The gauge invariance of the theory, restricting the possible values for the spins, induces propagating modes of spin changes. We investigate these modes under various assumptions about the parameters of the model.Comment: 11 pages, 7 figures included using epsfi

    Graphical Evolution of Spin Network States

    Full text link
    The evolution of spin network states in loop quantum gravity can be described by introducing a time variable, defined by the surfaces of constant value of an auxiliary scalar field. We regulate the Hamiltonian, generating such an evolution, and evaluate its action both on edges and on vertices of the spin network states. The analytical computations are carried out completely to yield a finite, diffeomorphism invariant result. We use techniques from the recoupling theory of colored graphs with trivalent vertices to evaluate the graphical part of the Hamiltonian action. We show that the action on edges is equivalent to a diffeomorphism transformation, while the action on vertices adds new edges and re-routes the loops through the vertices.Comment: 24 pages, 21 PostScript figures, uses epsfig.sty, Minor corrections in the final formula in the main body of the paper and in the formula for the Tetrahedral net in the Appendi

    Regularization of the Hamiltonian constraint and the closure of the constraint algebra

    Full text link
    In the paper we discuss the process of regularization of the Hamiltonian constraint in the Ashtekar approach to quantizing gravity. We show in detail the calculation of the action of the regulated Hamiltonian constraint on Wilson loops. An important issue considered in the paper is the closure of the constraint algebra. The main result we obtain is that the Poisson bracket between the regulated Hamiltonian constraint and the Diffeomorphism constraint is equal to a sum of regulated Hamiltonian constraints with appropriately redefined regulating functions.Comment: 23 pages, epsfig.st

    Matrix Elements of Thiemann's Hamiltonian Constraint in Loop Quantum Gravity

    Get PDF
    We present an explicit computation of matrix elements of the hamiltonian constraint operator in non-perturbative quantum gravity. In particular, we consider the euclidean term of Thiemann's version of the constraint and compute its action on trivalent states, for all its natural orderings. The calculation is performed using graphical techniques from the recoupling theory of colored knots and links. We exhibit the matrix elements of the hamiltonian constraint operator in the spin network basis in compact algebraic form.Comment: 32 pages, 22 eps figures. LaTeX (Using epsfig.sty,ioplppt.sty and bezier.sty). Submited to Classical and Quantum Gravit

    Weave states for plane gravitational waves

    Full text link

    Gravity: From Classical to Quantum

    Full text link
    corecore