120 research outputs found

    Signals of demographic expansion in Drosophila virilis

    Get PDF
    BACKGROUND: The pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonizations, can be inferred. Drosophila virilis is a cosmopolitan species belonging to the virilis group, where divergence times between different phylads go back to the early Miocene. We analysed mitochondrial DNA sequence variation among 35 Drosophila virilis strains covering the species' range in order to detect demographic events that could be used to understand the present characteristics of the species, as well as its differences from other members of the group. RESULTS: Drosophila virilis showed very low nucleotide diversity with haplotypes distributed in a star-like network, consistent with a recent world-wide exponential expansion possibly associated either with domestication or post-glacial colonization. All analyses point towards a rapid population expansion. Coalescence models support this interpretation. The central haplotype in the network, which could be interpreted as ancestral, is widely distributed and gives no information about the geographical origin of the population expansion. The species showed no geographic structure in the distribution of mitochondrial haplotypes, in contrast to results of a recent microsatellite-based analysis. CONCLUSION: The lack of geographic structure and the star-like topology depicted by the D. virilis haplotypes indicate a pattern of global demographic expansion, probably related to human movements, although this interpretation cannot be distinguished from a selective sweep in the mitochondrial DNA until nuclear sequence data become available. The particular behavioural traits of this species, including weak species-discrimination and intraspecific mate choice exercised by the females, can be understood from this perspective

    Signals of demographic expansion in Drosophila virilis

    Get PDF
    Background. The pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonizations, can be inferred. Drosophila virilis is a cosmopolitan species belonging to the virilis group, where divergence times between different phylads go back to the early Miocene. We analysed mitochondrial DNA sequence variation among 35 Drosophila virilis strains covering the species' range in order to detect demographic events that could be used to understand the present characteristics of the species, as well as its differences from other members of the group. Results. Drosophila virilis showed very low nucleotide diversity with haplotypes distributed in a star-like network, consistent with a recent world-wide exponential expansion possibly associated either with domestication or post-glacial colonization. All analyses point towards a rapid population expansion. Coalescence models support this interpretation. The central haplotype in the network, which could be interpreted as ancestral, is widely distributed and gives no information about the geographical origin of the population expansion. The species showed no geographic structure in the distribution of mitochondrial haplotypes, in contrast to results of a recent microsatellite-based analysis. Conclusion. The lack of geographic structure and the star-like topology depicted by the D. virilis haplotypes indicate a pattern of global demographic expansion, probably related to human movements, although this interpretation cannot be distinguished from a selective sweep in the mitochondrial DNA until nuclear sequence data become available. The particular behavioural traits of this species, including weak species-discrimination and intraspecific mate choice exercised by the females, can be understood from this perspective.peerReviewe

    The first-generation Daphnia magna linkage map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Daphnia magna </it>is a well-established model species in ecotoxicology, ecology and evolution. Several new genomics tools are presently under development for this species; among them, a linkage map is a first requirement for estimating the genetic background of phenotypic traits in quantitative trait loci (QTL) studies and is also very useful in assembling the genome. It also enables comparative studies between <it>D. magna </it>and <it>D. pulex</it>, for which a linkage map already exists.</p> <p>Results</p> <p>Here we describe the first genetic linkage map of <it>D. magna</it>. We generated 214 F2 (intercross) clonal lines as the foundation of the linkage analysis. The linkage map itself is based on 109 microsatellite markers, which produced ten major linkage groups ranging in size from 31.1 cM to 288.5 cM. The total size of this linkage map extends to 1211.6 Kosambi cM, and the average interval for the markers within linkage groups is 15.1 cM. The F2 clones can be used to map QTLs for traits that differ between the parental clones. We successfully mapped the location of two loci with infertility alleles, one inherited from the paternal clone (Iinb1) and the other from the maternal clone (Xinb3).</p> <p>Conclusions</p> <p>The <it>D. magna </it>linkage map presented here provides extensive coverage of the genome and a given density of markers that enable us to detect QTLs of moderate to strong effects. It is similar in size to the linkage map of <it>D. pulex</it>.</p

    Selection for outbreeding in <i>Varroa </i>parasitising resistant honey bee (<i>Apis mellifera</i>) colonies

    Get PDF
    AbstractParasitism is expected to select for counter‐adaptations in the host: driving a coevolutionary arms race. However, human interference between honey bees (Apis mellifera) and Varroa mites removes the effect of natural selection and restricts the evolution of host counter‐adaptations. With full‐sibling mating common among Varroa, this can rapidly select for virulent, highly inbred, Varroa populations. We investigated how the evolution of host resistance could affect the infesting population of Varroa mites.We screened a Varroa‐resistant honey bee population near Toulouse, France, for a Varroa resistance trait: the inhibition of Varroa’s reproduction in drone pupae. We then genotyped Varroa which had co‐infested a cell using microsatellites. Across all resistant honey bee colonies, Varroa’s reproductive success was significantly higher in co‐infested cells but the distribution of Varroa between singly and multiply infested cells was not different from random. While there was a trend for increased reproductive success when Varroa of differing haplotypes co‐infested a cell, this was not significant. This suggests local mate competition, through the presence of another Varroa foundress in a pupal cell, may be enough to help Varroa overcome host resistance traits; with a critical mass of infesting Varroa overwhelming host resistance. However, the fitness trade‐offs associated with preferentially co‐infesting cells may be too high for Varroa to evolve a mechanism to identify already‐infested cells. The increased reproductive success of Varroa when co‐infesting resistant pupal cells may act as a release valve on the selective pressure for the evolution of counter resistance traits: helping to maintain a stable host–parasite relationship.Abstract Parasitism is expected to select for counter‐adaptations in the host: driving a coevolutionary arms race. However, human interference between honey bees (Apis mellifera) and Varroa mites removes the effect of natural selection and restricts the evolution of host counter‐adaptations. With full‐sibling mating common among Varroa, this can rapidly select for virulent, highly inbred, Varroa populations. We investigated how the evolution of host resistance could affect the infesting population of Varroa mites. We screened a Varroa‐resistant honey bee population near Toulouse, France, for a Varroa resistance trait: the inhibition of Varroa’s reproduction in drone pupae. We then genotyped Varroa which had co‐infested a cell using microsatellites. Across all resistant honey bee colonies, Varroa’s reproductive success was significantly higher in co‐infested cells but the distribution of Varroa between singly and multiply infested cells was not different from random. While there was a trend for increased reproductive success when Varroa of differing haplotypes co‐infested a cell, this was not significant. This suggests local mate competition, through the presence of another Varroa foundress in a pupal cell, may be enough to help Varroa overcome host resistance traits; with a critical mass of infesting Varroa overwhelming host resistance. However, the fitness trade‐offs associated with preferentially co‐infesting cells may be too high for Varroa to evolve a mechanism to identify already‐infested cells. The increased reproductive success of Varroa when co‐infesting resistant pupal cells may act as a release valve on the selective pressure for the evolution of counter resistance traits: helping to maintain a stable host–parasite relationship

    Not just another genome

    Get PDF
    Sequence analysis of the Daphnia pulex genome holds some surprises that could not have been anticipated from what was learned so far from other arthropod genomes. It establishes Daphnia as an eco-genetical model organism par excellence
    corecore