6,224 research outputs found

    Determination of ball bearing dynamic stiffness

    Get PDF
    The dynamic radial stiffness characteristics of rolling element bearings are currently determined by analytical methods that have not been experimentally verified. These bearing data are vital to rotating machinery design integrity because accurate critical speeds and rotor stability predictions are highly dependent on the bearing stiffness. A tester was designed capable of controlling the bearing axial preload, speed, and rotor unbalance. The rotor and support structures were constructed to permit critical speeds that are predominantly determined by a 57 mm test bearing. A curve of calculated critical speed versus stiffness was used to determine the actual bearing stiffness from the empirical data. The results of extensive testing are used to verify analytical predictions, increase confidence in existing bearing computer programs, and to serve as a data base for efforts to correct these programs

    Faint Radio Sources and Star Formation History

    Full text link
    Faint extragalactic radio sources provide important information about the global history of star formation. Sensitive radio observations of the Hubble Deep Field and other fields have found that sub-mJy radio sources are predominantly associated with star formation activity rather than AGN. Radio observations of star forming galaxies have the advantage of being independent of extinction by dust. We use the FIR-radio correlation to compare the radio and FIR backgrounds, and make several conclusions about the star forming galaxies producing the FIR background. We then use the redshift distribution of faint radio sources to determine the evolution of the radio luminosity function, and thus estimate the star formation density as a function of redshift.Comment: 12 pages, 9 figures, latex using texas.sty, to appear in the CD-ROM Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology, held in Paris, France, Dec. 14-18, 1998. Eds.: J. Paul, T. Montmerle, and E. Aubourg (CEA Saclay). No changes to paper, just updated publication info in this commen

    The star-formation history of the universe - an infrared perspective

    Get PDF
    A simple and versatile parameterized approach to the star formation history allows a quantitative investigation of the constraints from far infrared and submillimetre counts and background intensity measurements. The models include four spectral components: infrared cirrus (emission from interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN dust torus. The 60 μ\mum luminosity function is determined for each chosen rate of evolution using the PSCz redshift data for 15000 galaxies. The proportions of each spectral type as a function of 60 μ\mum luminosity are chosen for consistency with IRAS and SCUBA colour-luminosity relations, and with the fraction of AGN as a function of luminosity found in 12 μ\mum samples. The luminosity function for each component at any wavelength can then be calculated from the assumed spectral energy distributions. With assumptions about the optical seds corresponding to each component and, for the AGN component, the optical and near infrared counts can be accurately modelled. A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850 μ\mum can be found with pure luminosity evolution in all 3 cosmological models investigated: Ωo\Omega_o = 1, Ωo\Omega_o = 0.3 (Λ\Lambda = 0), and Ωo\Omega_o = 0.3, Λ\Lambda = 0.7. All 3 models also give an acceptable fit to the integrated background spectrum. Selected predictions of the models, for example redshift distributions for each component at selected wavelengths and fluxes, are shown. The total mass-density of stars generated is consistent with that observed, in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details of models can be found at http://astro.ic.ac.uk/~mrr/countmodel

    New Results from a Near-Infrared Search for Hidden Broad-Line Regions in Ultraluminous Infrared Galaxies

    Get PDF
    This paper reports the latest results from a near-infrared search for hidden broad-line regions (BLRs: FWHM >~ 2,000 km/s) in ultraluminous infrared galaxies (ULIGs). The new sample contains thirty-nine ULIGs from the 1-Jy sample selected for their lack of BLRs at optical wavelengths. The results from this new study are combined with those from our previous optical and near-infrared surveys to derive the fraction of all ULIGs with optical or near-infrared signs of genuine AGN activity (either a BLR or [Si VI] emission). Comparisons of the dereddened emission-line luminosities of the optical or obscured BLRs detected in the ULIGs of the 1-Jy sample with those of optical quasars indicate that the obscured AGN/quasar in ULIGs is the main source of energy in at least 15 -- 25% of all ULIGs in the 1-Jy sample. This fraction is 30 -- 50% among ULIGs with L_ir > 10^{12.3} L_sun. These results are compatible with those from recent mid-infrared spectroscopic surveys carried out with ISO. (abridged)Comment: 40 pages including 10 figures and 3 tables (Table 3 should be printed in landscape mode

    On the Determination of Star Formation Rates in Evolving Galaxy Populations

    Get PDF
    The redshift dependence of the luminosity density in certain wavebands (e.g. UV and H-alpha) can be used to infer the history of star formation in the populations of galaxies producing this luminosity. This history is a useful datum in studies of galaxy evolution. It is therefore important to understand the errors that attend the inference of star formation rate densities from luminosity densities. This paper explores the self-consistency of star formation rate diagnostics by reproducing commonly used observational procedures in a model with known galaxy populations, evolutionary histories and spectral emission properties. The study reveals a number of potential sources of error in the diagnostic processes arising from the differential evolution of different galaxy types. We argue that multi-wavelength observations can help to reduce these errors.Comment: 13 pages (including 5 encapsulated postscript figures), aastex, accepted for publication in Ap

    The Relationship Between Molecular Gas Tracers and Kennicutt-Schmidt Laws

    Full text link
    We provide a model for how Kennicutt-Schmidt (KS) laws, which describe the correlation between star formation rate and gas surface or volume density, depend on the molecular line chosen to trace the gas. We show that, for lines that can be excited at low temperatures, the KS law depends on how the line critical density compares to the median density in a galaxy's star-forming molecular clouds. High critical density lines trace regions with similar physical properties across galaxy types, and this produces a linear correlation between line luminosity and star formation rate. Low critical density lines probe regions whose properties vary across galaxies, leading to a star formation rate that varies superlinearly with line luminosity. We show that a simple model in which molecular clouds are treated as isothermal and homogenous can quantitatively reproduce the observed correlations between galactic luminosities in far infrared and in the CO(1->0) and HCN(1->0) lines, and naturally explains why these correlations have different slopes. We predict that IR-line luminosity correlations should change slope for galaxies in which the median density is close to the line critical density. This prediction may be tested by observations of lines such as HCO^+(1->0) with intermediate critical densities, or by HCN(1->0) observations of intensely star-forming high redshift galaxies with very high densities. Recent observations by Gao et al. hint at just such a change in slope. We argue that deviations from linearity in the HCN(1->0)-IR correlation at high luminosity are consistent with the assumption of a constant star formation efficiency.Comment: Accepted to ApJ. 11 pages, 4 figures, emulateapj format. This version has some additional models exploring the effects of varying metallicity and temperature. The conclusions are unchange

    Imaging of Ultraluminous Infrared Galaxies in the Near-UV

    Get PDF
    We present the first ground-based U' (3410 angstroms) images of Ultraluminous Infrared Galaxies (ULIGs). Strong U' emission (median total M_U' = -20.8) is seen in all systems and in some cases the extended tidal features (both the smooth stellar distribution and compact star-forming features) contribute up to 60-80% of the total flux. The star-forming regions in both samples are found to have ages based on spectral synthesis models in the range 10-100 Myrs, and most differences in color between them can be attributed to the effects of dust reddening. Additionally, it is found that star-formation in compact knots in the tidal tails is most prominent in those ULIGs which have double nuclei, suggesting that the star-formation rate in the tails peaks prior to the actual coalescence of the galaxy nuclei and diminishes quickly thereafter. Similar to results at other wavelengths, the observed star formation at U' can only account for a small fraction of the known bolometric luminosity of the ULIGs. Azimuthally averaged radial light profiles at U' are characterized by a sersic law with index n=2, which is intermediate between an exponential disk and an r^(-1/4) law and closely resembles the latter at large radii. The implications of this near-ultraviolet imaging for optical/near-infrared observations of high redshift counterparts of ULIGs are discussed.Comment: 30 pages, 4 tables, and 9 figures, 2 of which are JPEGs. To appear in the August, 2000 edition of the Astronomical Journa
    corecore