1,741 research outputs found
Cosmological Parameters: do we already know the final answer ?
Some of the arguments which support the strong concensus for an =
0.3, = 0.7 model are reexamined. Corrections for Malmquist bias,
local flow and metallicity suggest a revised value for of 63 6
km/s/Mpc, improving the age problems for an = 1 universe. The latest
CMB results may require a high baryon density and hence new physics, for
example a strong lepton asymmetry. Difficulties for the = 1 model
with cluster evolution, the baryon content of clusters, and the evidence from
Type Ia supernovae favouring low , models, are
discussed critically.Comment: 10 pages, 3 figures. To appear in 'IDM2000: 3rd International
Workshop on Identification of Dark Matter', ed N.Spooner (World Scientific
Models for infrared emission from IRAS galaxies
Models for the infrared emission from Infrared Astronomy Satellite (IRAS) galaxies by Rowan-Robinson and Crawford, by deJong and Brink, and by Helou, are reviewed. Rowan-Robinson and Crawford model the 12 to 100 micron radiation from IRAS galaxies in terms of 3 components: a normal disk component, due to interstellar cirrus; a starburst component, modeled as hot stars in an optically thick dust cloud; and a Seyfert component, modeled as a power-law continuum immersed in an n(r) variation r sup -1 dust cloud associated with the narrow-line region of the Seyfert nucleus. The correlations between the luminosities in the different components, the blue luminosity, and the X-ray luminosity of the galaxies are consistent with the model. Spectra from 0.1 to 1000 microns are predicted and compared with available observations. The de Jong and Brink, and Helou, model IRAS non-Seyfert galaxies in terms of a cool (cirrus) component and a warm (starburst) component. The de Jong and Brink estimate the face-on internal extinction in the galaxies and find that it is higher in galaxies with more luminous starbursts. In Helou's model the spectrum of the warm component varies strongly with the luminosity in that component. The three models are briefly compared
The Global Star Formation Rate from the 1.4 GHz Luminosity Function
The decimetric luminosity of many galaxies appears to be dominated by
synchrotron emission excited by supernova explosions. Simple models suggest
that the luminosity is directly proportional to the rate of supernova
explosions of massive stars averaged over the past 30 Myr. The proportionality
may be used together with models of the evolving 1.4 GHz luminosity function to
estimate the global star formation rate density in the era z < 1. The local
value is estimated to be 0.026 solar masses per year per cubic megaparsec, some
50% larger than the value inferred from the Halpha luminosity density. The
value at z ~ 1 is found to be 0.30 solar masses per year per cubic megaparsec.
The 10-fold increase in star formation rate density is consistent with the
increase inferred from mm-wave, far-infrared, ultra-violet and Halpha
observations.Comment: 10 pages, 2 figures, Astrophysical Journal Letters (in press); new PS
version has improved figure placemen
The Redshift of GRB 970508
GRB 970508 is the second gamma-ray burst (GRB) for which an optical afterglow
has been detected. It is the first GRB for which a distance scale has been
determined: absorption and emission features in spectra of the optical
afterglow place GRB 970508 at a redshift of z >= 0.835 (Metzger et al. 1997a,
1997b). The lack of a Lyman-alpha forest in these spectra further constrains
this redshift to be less than approximately 2.3. I show that the spectrum of
the optical afterglow of GRB 970508, once corrected for Galactic absorption, is
inconsistent with the relativistic blast-wave model unless a second, redshifted
source of extinction is introduced. This second source of extinction may be the
yet unobserved host galaxy. I determine its redshift to be z =
1.09^{+0.14}_{-0.41}, which is consistent with the observed redshift of z =
0.835. Redshifts greater than z = 1.40 are ruled out at the 3 sigma confidence
level.Comment: Accepted to The Astrophysical Journal (Letters), 10 pages, LaTe
- …
