30,084 research outputs found
The Use of Dramatic Demonstrations to Enhance the Motivation and Learning of Chemistry Students
As part of the Virginia Collaborative for Excellence in the Preparation of Teachers (VCEPT) project, a series of demonstrations was incorporated into Chemistry 100: Man and Environment, a science course taken by non-science majors including many prospective K-12 teachers. Dramatic chemical demonstrations were first presented to the undergraduate students by the instructor, and then they used demonstration activities to teach each other during the semester. Finally, these undergraduates presented to the K-6 students in the Norfolk Statue University (NSU) Summer Children’s College. The perceptions of science by the undergraduates at the beginning and end of the course were assessed using a questionnaire. The responses of the K-6 students in the Children’s College were assessed through informal interviews and audience response. The use of these demonstrations seemed to change the perception of science held by the undergraduate students. In addition, this limited assessment indicated that these demonstrations may have helped more of the undergraduates consider teaching as a career option
A computer code for calculations in the algebraic collective model of the atomic nucleus
A Maple code is presented for algebraic collective model (ACM) calculations.
The ACM is an algebraic version of the Bohr model of the atomic nucleus, in
which all required matrix elements are derived by exploiting the model's
SU(1,1) x SO(5) dynamical group. This paper reviews the mathematical
formulation of the ACM, and serves as a manual for the code.
The code enables a wide range of model Hamiltonians to be analysed. This
range includes essentially all Hamiltonians that are rational functions of the
model's quadrupole moments and are at most quadratic in the corresponding
conjugate momenta (). The code makes use of expressions
for matrix elements derived elsewhere and newly derived matrix elements of the
operators and . The code is
made efficient by use of an analytical expression for the needed SO(5)-reduced
matrix elements, and use of SO(5)SO(3) Clebsch-Gordan coefficients
obtained from precomputed data files provided with the code.Comment: REVTEX4. v2: Minor improvements and corrections. v3: Introduction
rewritten, references added, Appendix B.4 added illustrating efficiencies
obtained using modified basis, Appendix E added summarising computer
implementation, and other more minor improvements. 43 pages. Manuscript and
program to be published in Computer Physics Communications (2016
BIBS: A Lecture Webcasting System
The Berkeley Internet Broadcasting System (BIBS) is a lecture webcasting system developed and operated by the Berkeley Multimedia Research Center. The system offers live remote viewing and on-demand replay of course lectures using streaming audio and video over the Internet. During the Fall 2000 semester 14 classes were webcast, including several large lower division classes, with a total enrollment of over 4,000 students. Lectures were played over 15,000 times per month during the semester. The primary use of the webcasts is to study for examinations. Students report they watch BIBS lectures because they did not understand material presented in lecture, because they wanted to review what the instructor said about selected topics, because they missed a lecture, and/or because they had difficulty understanding the speaker (e.g., non-native English speakers). Analysis of various survey data suggests that more than 50% of the students enrolled in some large classes view lectures and that as many as 75% of the lectures are played by members of the Berkeley community. Faculty attitudes vary about the virtues of lecture webcasting. Some question the use of this technology while others believe it is a valuable aid to education. Further study is required to accurately assess the pedagogical impact that lecture webcasts have on student learning
An equations-of-motion approach to quantum mechanics: application to a model phase transition
We present a generalized equations-of-motion method that efficiently
calculates energy spectra and matrix elements for algebraic models. The method
is applied to a 5-dimensional quartic oscillator that exhibits a quantum phase
transition between vibrational and rotational phases. For certain parameters,
10 by 10 matrices give better results than obtained by diagonalising 1000 by
1000 matrices.Comment: 4 pages, 1 figur
On giant piezoresistance effects in silicon nanowires and microwires
The giant piezoresistance (PZR) previously reported in silicon nanowires is
experimentally investigated in a large number of surface depleted silicon nano-
and micro-structures. The resistance is shown to vary strongly with time due to
electron and hole trapping at the sample surfaces. Importantly, this time
varying resistance manifests itself as an apparent giant PZR identical to that
reported elsewhere. By modulating the applied stress in time, the true PZR of
the structures is found to be comparable with that of bulk silicon
Vector coherent state representations, induced representations, and geometric quantization: II. Vector coherent state representations
It is shown here and in the preceeding paper (quant-ph/0201129) that vector
coherent state theory, the theory of induced representations, and geometric
quantization provide alternative but equivalent quantizations of an algebraic
model. The relationships are useful because some constructions are simpler and
more natural from one perspective than another. More importantly, each approach
suggests ways of generalizing its counterparts. In this paper, we focus on the
construction of quantum models for algebraic systems with intrinsic degrees of
freedom. Semi-classical partial quantizations, for which only the intrinsic
degrees of freedom are quantized, arise naturally out of this construction. The
quantization of the SU(3) and rigid rotor models are considered as examples.Comment: 31 pages, part 2 of two papers, published versio
Treasury bill versus private money market yield curves
An abstract for this article is not availableMoney market ; Treasury bills ; Interest rates
Erosion/corrosion of turbine airfoil materials in the high-velocity effluent of a pressurized fluidized coal combustor
Four candidate turbine airfoil superalloys were exposed to the effluent of a pressurized fluidized bed with a solids loading of 2 to 4 g/scm for up to 100 hours at two gas velocities, 150 and 270 m/sec, and two temperatures, 730 deg and 795 C. Under these conditions, both erosion and corrosion occurred. The damaged specimens were examined by cross-section measurements, scanning electron and light microscopy, and X-ray analysis to evaluate the effects of temperature, velocity, particle loading, and alloy material. Results indicate that for a given solids loading the extent of erosion is primarily dependent on gas velocity. Corrosion occurred only at the higher temperature. There was little difference in the erosion/corrosion damage to the four alloys tested under these severe conditions
- …
