2,953 research outputs found

    Reference manual for the Langley Research Center flight simulation computing system

    Get PDF
    The researchers at the Langley Research Center Flight Simulation Computing System are provided with an advanced real-time digital simulation capability. This capability is controlled at the user interface level by the Real Time Simulation Supervisor. The Supervisor is a group of subprograms loaded with a simulation application program. The Supervisor provides the interface between the application program and the operating system, and coordinates input and output to and from the simulation hardware. The Supervisor also performs various utility functions as required by a simulation application program

    Role of Quantum Confinement in Luminescence Efficiency of Group IV Nanostructures

    Full text link
    Experimental results obtained previously for the photoluminescence efficiency (PLeff_{eff}) of Ge quantum dots (QDs) are theoretically studied. A log\log-log\log plot of PLeff_{eff} versus QD diameter (DD) resulted in an identical slope for each Ge QD sample only when EG(D2+D)1E_{G}\sim (D^2+D)^{-1}. We identified that above DD\approx 6.2 nm: EGD1E_{G}\sim D^{-1} due to a changing effective mass (EM), while below DD\approx 4.6 nm: EGD2E_{G}\sim D^{-2} due to electron/ hole confinement. We propose that as the QD size is initially reduced, the EM is reduced, which increases the Bohr radius and interface scattering until eventually pure quantum confinement effects dominate at small DD

    Murchison Widefield Array and XMM-Newton observations of the Galactic supernova remnant G5.9+3.1

    Get PDF
    In this paper we discuss the radio continuum and X-ray properties of the so-far poorly studied Galactic supernova remnant (SNR) G5.9+3.1. We present the radio spectral energy distribution (SED) of the Galactic SNR G5.9+3.1 obtained with the Murchison Widefield Array (MWA). Combining these new observations with the surveys at other radio continuum frequencies, we discuss the integrated radio continuum spectrum of this particular remnant. We have also analyzed an archival XMM-Newton observation, which represents the first detection of X-ray emission from this remnant. The SNR SED is very well explained by a simple power-law relation. The synchrotron radio spectral index of G5.9+3.1, is estimated to be 0.42±\pm0.03 and the integrated flux density at 1GHz to be around 2.7Jy. Furthermore, we propose that the identified point radio source, located centrally inside the SNR shell, is most probably a compact remnant of the supernova explosion. The shell-like X-ray morphology of G5.9+3.1 as revealed by XMM-Newton broadly matches the spatial distribution of the radio emission, where the radio-bright eastern and western rims are also readily detected in the X-ray while the radio-weak northern and southern rims are weak or absent in the X-ray. Extracted MOS1+MOS2+PN spectra from the whole SNR as well as the north, east, and west rims of the SNR are fit successfully with an optically thin thermal plasma model in collisional ionization equilibrium with a column density N_H~0.80x102210^{22} cm2^{-2} and fitted temperatures spanning the range kT~0.14-0.23keV for all of the regions. The derived electron number densities n_e for the whole SNR and the rims are also roughly comparable (ranging from ~0.20f1/20.20f^{-1/2} cm3^{-3} to ~0.40f1/20.40f^{-1/2} cm3^{-3}, where f is the volume filling factor). We also estimate the swept-up mass of the X-ray emitting plasma associated with G5.9+3.1 to be ~46f1/2M46f^{-1/2}M_{\odot}.Comment: Accepted for publication in A&

    Quantum dots with even number of electrons: Kondo effect in a finite magnetic field

    Full text link
    We study a small spin-degenerate quantum dot with even number of electrons, weakly connected by point contacts to the metallic electrodes, and subject to an external magnetic field. If the Zeeman energy B is equal to the single-particle level spacing Δ\Delta in the dot, the ground state of the dot becomes doubly degenerate, and the system exhibits Kondo effect, despite the fact that B exceeds by far the Kondo temperature TKT_{K}. A possible realization of this in tunneling experiments is discussed

    Molecular Clouds associated with the Type Ia SNR N103B in the Large Magellanic Cloud

    Full text link
    N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out new 12^{12}CO(JJ = 3-2) and 12^{12}CO(JJ = 1-0) observations using ASTE and ALMA. We have confirmed the existence of a giant molecular cloud (GMC) at VLSRV_\mathrm{LSR} \sim245 km s1^{-1} towards the southeast of the SNR using ASTE 12^{12}CO(JJ = 3-2) data at an angular resolution of \sim25"" (\sim6 pc in the LMC). Using the ALMA 12^{12}CO(JJ = 1-0) data, we have spatially resolved CO clouds along the southeastern edge of the SNR with an angular resolution of \sim1.8"" (\sim0.4 pc in the LMC). The molecular clouds show an expanding gas motion in the position-velocity diagram with an expansion velocity of 5\sim5 km s1^{-1}. The spatial extent of the expanding shell is roughly similar to that of the SNR. We also find tiny molecular clumps in the directions of optical nebula knots. We present a possible scenario that N103B exploded in the wind-bubble formed by the accretion winds from the progenitor system, and is now interacting with the dense gas wall. This is consistent with a single-degenerate scenario.Comment: 12 pages, 1 table, 8 figures, accepted for publication in The Astrophysical Journal (ApJ

    Spin-charge separation and Kondo effect in an open quantum dot

    Full text link
    We study a quantum dot connected to the bulk by single-mode junctions at almost perfect conductance. Although the average charge eNe\langle N \rangle of the dot is not discrete, its spin remains quantized: s=1/2s=1/2 or s=0s=0, depending (periodically) on the gate voltage. This drastic difference from the conventional mixed-valence regime stems from the existence of a broad-band, dense spectrum of discrete levels in the dot. In the doublet state, the Kondo effect develops at low temperatures. We find the Kondo temperature TKT_K and the conductance at TTKT\lesssim T_K.Comment: 4 pages, 1 figur

    Finite voltage shot noise in normal-metal - superconductor junctions

    Full text link
    We express the low-frequency shot noise in a disordered normal-metal - superconductor (NS) junction at finite (subgap) voltage in terms of the normal scattering amplitudes and the Andreev reflection amplitude. In the multichannel limit, the conductance exhibits resonances which are accompanied by an enhancement of the (differential) shot noise. In the study of multichannel single and double barrier junctions we discuss the noise properties of coherent transport at low versus high voltage with respect to the Andreev level spacing.Comment: 6 pages, Latex, 2 eps-figures, to be published in PRB, Appendix on Bogoliubov equation

    Magnetic field dependence of vortex activation energy: a comparison between MgB2, NbSe2 and Bi2Sr2Ca2Cu3O10 superconductors

    Full text link
    The dissipative mechanism at low current density is compared in three different classes of superconductors. This is achieved by measurement of resistance as a function of temperature and magnetic field in clean polycrystalline samples of NbSe2, MgB2 and Bi2Sr2Ca2Cu3O10 superconductors. Thermally activated flux flow behavior is clearly identified in bulk MgB2. While the activation energy at low fields for MgB2 is comparable to Bi2Sr2Ca2Cu3O10, its field dependence follows a parabolic behavior unlike a power law dependence seen in Bi2Sr2Ca2Cu3O10. We analyze our results based on the Kramer's scaling for grain boundary pinning in MgB2and NbSe2

    Kondo effect in quantum dots

    Full text link
    We review mechanisms of low-temperature electronic transport through a quantum dot weakly coupled to two conducting leads. Transport in this case is dominated by electron-electron interaction. At temperatures moderately lower than the charging energy of the dot, the linear conductance is suppressed by the Coulomb blockade. Upon further lowering of the temperature, however, the conductance may start to increase again due to the Kondo effect. We concentrate on lateral quantum dot systems and discuss the conductance in a broad temperature range, which includes the Kondo regime
    corecore