2,953 research outputs found
Reference manual for the Langley Research Center flight simulation computing system
The researchers at the Langley Research Center Flight Simulation Computing System are provided with an advanced real-time digital simulation capability. This capability is controlled at the user interface level by the Real Time Simulation Supervisor. The Supervisor is a group of subprograms loaded with a simulation application program. The Supervisor provides the interface between the application program and the operating system, and coordinates input and output to and from the simulation hardware. The Supervisor also performs various utility functions as required by a simulation application program
Recommended from our members
Water reuse for irrigated agriculture in Jordan: challenges of soil sustainability and the role of management strategies
Reclaimed water provides an important contribution to the water balance in water-scarce Jordan, but the quality of this water presents both benefits and challenges. Careful management of reclaimed water is required to maximize the nutrient benefits while minimizing the salinity risks. This work uses a multi-disciplinary research approach to show that soil response to irrigation with reclaimed water is a function of the management strategies adopted on the farm by the water user. The adoption of management methods to maintain soil productivity can be seen to be a result of farmers’ awareness to potentially plant-toxic ions in the irrigation water (70% of Jordan Valley farmers identified salinization as a hazard from irrigation with reclaimed water). However, the work also suggests that farmers’ management capacity is affected by the institutional management of water. About a third (35%) of farmers in the Jordan Valley claimed that their ability to manage salinization was limited by water shortages. Organizational interviews revealed that institutional awareness of soil management challenges was quite high (34% of interviewees described salinization as a risk from water reuse), but strategies to address this challenge at the institutional level require greater development
Role of Quantum Confinement in Luminescence Efficiency of Group IV Nanostructures
Experimental results obtained previously for the photoluminescence efficiency
(PL) of Ge quantum dots (QDs) are theoretically studied. A
- plot of PL versus QD diameter () resulted in an
identical slope for each Ge QD sample only when . We
identified that above 6.2 nm: due to a changing
effective mass (EM), while below 4.6 nm: due to
electron/ hole confinement. We propose that as the QD size is initially
reduced, the EM is reduced, which increases the Bohr radius and interface
scattering until eventually pure quantum confinement effects dominate at small
Murchison Widefield Array and XMM-Newton observations of the Galactic supernova remnant G5.9+3.1
In this paper we discuss the radio continuum and X-ray properties of the
so-far poorly studied Galactic supernova remnant (SNR) G5.9+3.1. We present the
radio spectral energy distribution (SED) of the Galactic SNR G5.9+3.1 obtained
with the Murchison Widefield Array (MWA). Combining these new observations with
the surveys at other radio continuum frequencies, we discuss the integrated
radio continuum spectrum of this particular remnant. We have also analyzed an
archival XMM-Newton observation, which represents the first detection of X-ray
emission from this remnant. The SNR SED is very well explained by a simple
power-law relation. The synchrotron radio spectral index of G5.9+3.1, is
estimated to be 0.420.03 and the integrated flux density at 1GHz to be
around 2.7Jy. Furthermore, we propose that the identified point radio source,
located centrally inside the SNR shell, is most probably a compact remnant of
the supernova explosion. The shell-like X-ray morphology of G5.9+3.1 as
revealed by XMM-Newton broadly matches the spatial distribution of the radio
emission, where the radio-bright eastern and western rims are also readily
detected in the X-ray while the radio-weak northern and southern rims are weak
or absent in the X-ray. Extracted MOS1+MOS2+PN spectra from the whole SNR as
well as the north, east, and west rims of the SNR are fit successfully with an
optically thin thermal plasma model in collisional ionization equilibrium with
a column density N_H~0.80x cm and fitted temperatures spanning
the range kT~0.14-0.23keV for all of the regions. The derived electron number
densities n_e for the whole SNR and the rims are also roughly comparable
(ranging from ~ cm to ~ cm, where f
is the volume filling factor). We also estimate the swept-up mass of the X-ray
emitting plasma associated with G5.9+3.1 to be ~.Comment: Accepted for publication in A&
Quantum dots with even number of electrons: Kondo effect in a finite magnetic field
We study a small spin-degenerate quantum dot with even number of electrons,
weakly connected by point contacts to the metallic electrodes, and subject to
an external magnetic field. If the Zeeman energy B is equal to the
single-particle level spacing in the dot, the ground state of the dot
becomes doubly degenerate, and the system exhibits Kondo effect, despite the
fact that B exceeds by far the Kondo temperature . A possible
realization of this in tunneling experiments is discussed
Molecular Clouds associated with the Type Ia SNR N103B in the Large Magellanic Cloud
N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud
(LMC). We carried out new CO( = 3-2) and CO( = 1-0)
observations using ASTE and ALMA. We have confirmed the existence of a giant
molecular cloud (GMC) at 245 km s towards the
southeast of the SNR using ASTE CO( = 3-2) data at an angular
resolution of 25 (6 pc in the LMC). Using the ALMA CO(
= 1-0) data, we have spatially resolved CO clouds along the southeastern edge
of the SNR with an angular resolution of 1.8 (0.4 pc in the
LMC). The molecular clouds show an expanding gas motion in the
position-velocity diagram with an expansion velocity of km s.
The spatial extent of the expanding shell is roughly similar to that of the
SNR. We also find tiny molecular clumps in the directions of optical nebula
knots. We present a possible scenario that N103B exploded in the wind-bubble
formed by the accretion winds from the progenitor system, and is now
interacting with the dense gas wall. This is consistent with a
single-degenerate scenario.Comment: 12 pages, 1 table, 8 figures, accepted for publication in The
Astrophysical Journal (ApJ
Spin-charge separation and Kondo effect in an open quantum dot
We study a quantum dot connected to the bulk by single-mode junctions at
almost perfect conductance. Although the average charge of
the dot is not discrete, its spin remains quantized: or ,
depending (periodically) on the gate voltage. This drastic difference from the
conventional mixed-valence regime stems from the existence of a broad-band,
dense spectrum of discrete levels in the dot. In the doublet state, the Kondo
effect develops at low temperatures. We find the Kondo temperature and
the conductance at .Comment: 4 pages, 1 figur
Finite voltage shot noise in normal-metal - superconductor junctions
We express the low-frequency shot noise in a disordered normal-metal -
superconductor (NS) junction at finite (subgap) voltage in terms of the normal
scattering amplitudes and the Andreev reflection amplitude. In the multichannel
limit, the conductance exhibits resonances which are accompanied by an
enhancement of the (differential) shot noise. In the study of multichannel
single and double barrier junctions we discuss the noise properties of coherent
transport at low versus high voltage with respect to the Andreev level spacing.Comment: 6 pages, Latex, 2 eps-figures, to be published in PRB, Appendix on
Bogoliubov equation
Magnetic field dependence of vortex activation energy: a comparison between MgB2, NbSe2 and Bi2Sr2Ca2Cu3O10 superconductors
The dissipative mechanism at low current density is compared in three
different classes of superconductors. This is achieved by measurement of
resistance as a function of temperature and magnetic field in clean
polycrystalline samples of NbSe2, MgB2 and Bi2Sr2Ca2Cu3O10 superconductors.
Thermally activated flux flow behavior is clearly identified in bulk MgB2.
While the activation energy at low fields for MgB2 is comparable to
Bi2Sr2Ca2Cu3O10, its field dependence follows a parabolic behavior unlike a
power law dependence seen in Bi2Sr2Ca2Cu3O10. We analyze our results based on
the Kramer's scaling for grain boundary pinning in MgB2and NbSe2
Kondo effect in quantum dots
We review mechanisms of low-temperature electronic transport through a
quantum dot weakly coupled to two conducting leads. Transport in this case is
dominated by electron-electron interaction. At temperatures moderately lower
than the charging energy of the dot, the linear conductance is suppressed by
the Coulomb blockade. Upon further lowering of the temperature, however, the
conductance may start to increase again due to the Kondo effect. We concentrate
on lateral quantum dot systems and discuss the conductance in a broad
temperature range, which includes the Kondo regime
- …
