910 research outputs found
Recommended from our members
AASE-II OBSERVATIONS OF TRACE CARBON SPECIES DISTRIBUTIONS IN THE MID TO UPPER TROPOSPHERE
MERIDIONAL DISTRIBUTIONS OF NO(X), NO(Y) AND OTHER SPECIES IN THE LOWER STRATOSPHERE AND UPPER TROPOSPHERE DURING AASE-II
Recommended from our members
Hydroxyl concentration estimates in the sunlit snowpack at Summit, Greenland
Experiments were performed at Summit, Greenland (72°34′ N, 38°29′ W) to investigate hydroxyl mixing ratios in the sunlit surface snowpack (or firn). We added a carefully selected mixture of hydrocarbon gases (with a wide range of hydroxyl reactivities) to a UV and visible light transparent flow chamber containing undisturbed natural firn. The relative decrease in mixing ratios of these gases allowed estimation of the lower limit mixing ratio of hydroxyl radicals in the near-surface firn pore spaces. Hydroxyl mixing ratios in the firn air followed a diurnal cycle in summer 2003 (10-12 July), with peak values of more than 3.2×106 molecules cm-3 between 13:00 and 16:00 local time. The minimum value estimated was 1.1×106 molecules cm-3 at 20:00 local time. Results during spring of 2004 showed lower, but rapidly increasing, peak hydroxyl mixing ratios of 1.1×106 molecules cm-3 in the early afternoon on 15 April and 1.5×106 molecules cm-3 on 1 May. Our firn hydroxyl estimates were similar to directly measured above-snow ambient levels during the spring field season, but were only about 30% of ambient levels during summer. © 2007 Elsevier Ltd. All rights reserved
Recommended from our members
Carbonyl sulfide and carbon disulfide: Large-scale distributions over the western Pacific and emissions from Asia during TRACE-P
An extensive set of carbonyl sulfide (OCS) and carbon disulfide (CS 2) observations were made as part of the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) project, which took place in the early spring 2001. TRACE-P sampling focused on the western Pacific region but in total included the geographic region 110°E to 290°E longitude, 5°N to 50°N latitude, and 0-12 km altitude. Substantial OCS and CS2 enhancements were observed for a great many air masses of Chinese and Japanese origin during TRACE-P. Over the western Pacific, mean mixing ratios of long-lived OCS and shorter-lived CS2 showed a gradual decrease by about 10% and a factor of 5-10, respectively, from the surface to 8-10 km altitude, presumably because land-based sources dominated their distribution during February through April 2001. The highest mean OCS and CS 2 levels (580 and 20 pptv, respectively, based on 2.5° × 2.5° latitude bins) were observed below 2 km near the coast of Asia, at latitudes between 25°N and 35°N, where urban Asian outflow was strongest. Ratios of OCS versus CO for continental SE Asia were much lower compared to Chinese and Japanese signatures and were strongly associated with biomass burning/biofuel emissions. We present a new inventory of anthropogenic Asian emissions (including biomass burning) for OCS and CS2 and compare it to emission estimates based on regional relationships of OCS and CS 2 to CO and CO2. The OCS and CS2 results for the two methods compare well for continental SE Asia and Japan plus Korea and also for Chinese CS2 emissions. However, it appears that the inventory underestimates Chinese emissions of OCS by about 30-100%. This difference may be related to the fact that we did not include natural sources such as wetland emissions in our inventory, although the contributions from such sources are believed to be at a seasonal low during the study period. Uncertainties in OCS emissions from Chinese coal burning, which are poorly characterized, likely contribute to the discrepancy. Copyright 2004 by the American Geophysical Union
Recommended from our members
Mexico City and the biogeochemistry of global urbanization
Mexico City is far advanced in its urban evolution, and cities in currently developing nations may soon follow a similar course. This paper investigates the strengths and weaknesses of infrastructures for the emerging megacities. The major driving force for infrastructure change in Mexico City is concern over air quality. Air chemistry data from recent field campaigns have been used to calculate fluxes in the atmosphere of the Valley of Mexico, for compounds that are important to biogeochemistry including methane (CH4), carbon monoxide (CO), nonmethane hydrocarbons (NMHCs), ammonia (NH3), sulfur dioxide (SO2), nitrogen oxides (NOx and NOy), soot, and dust. Leakage of liquified petroleum gas approached 10% during sampling periods, and automotive pollutant sources in Mexico City were found to match those in developed cities, despite a lower vehicle-to-person ratio of 0.1. Ammonia is released primarily from residential areas, at levels sufficient to titrate pollutant acids into particles across the entire basin. Enhancements of reduced nitrogen and hydrocarbons in the vapor phase skew the distribution of NOy species towards lower average deposition velocities. Partly as a result, downwind nutrient deposition occurs on a similar scale as nitrogen fixation across Central America, and augments marine nitrate upwelling. Dust suspension from unpaved roads and from the bed of Lake Texcoco was found to be comparable to that occurring on the periphery of the Sahara, Arabian, and Gobi deserts. In addition, sodium chloride (NaCl) in the dust may support heterogeneous chlorine oxide (ClOx) chemistry. The insights from our Mexico City analysis have been tentatively applied to the upcoming urbanization of Asia
Recommended from our members
Carbonyl sulfide (OCS): Large-scale distributions over North America during INTEX-NA and relationship to CO2
An extensive set of carbonyl sulfide (OCS) observations were made as part of the NASA Intercontinental Chemical Transport Experiment-North America (INTEX-NA) study, flown from 1 July to 14 August 2004 mostly over the eastern United States and Canada. These data show that summertime OCS mixing ratios at low altitude were dominated by surface drawdown and were highly correlated with CO2. Although local plumes were observed on some low-altitude flight legs, anthropogenic OCS sources were small compared to this sink. These INTEX-NA observations were in marked contrast to the early springtime 2001 Transport and Chemical Evolution over the Pacific experiment, which sampled Asian outflow dominated by anthropogenic OCS emissions. To test the gridded OCS fluxes used in past models, the INTEX-NA observations were combined with the sulfur transport Eulerian model (STEM) regional atmospheric chemistry model for a top-down assessment of bottom-up OCS surface fluxes for North America. Initial STEM results suggest that the modeled fluxes underestimate the OCS plant sink by more than 200%. Copyright 2008 by the American Geophysical Union
Biomarker-indicated extent of oxidation of plant-derived organic carbon (OC) in relation to geomorphology in an arsenic contaminated Holocene aquifer, Cambodia
The poisoning of rural populations in South and Southeast Asia due to high groundwater arsenic concentrations is one of the world’s largest ongoing natural disasters. It is important to consider environmental processes related to the release of geogenic arsenic, including geomorphological and organic geochemical processes. Arsenic is released from sediments when iron-oxide minerals, onto which arsenic is adsorbed or incorporated, react with organic carbon (OC) and the OC is oxidised. In this study we build a new geomorphological framework for Kandal Province, a highly studied arsenic affected region of Cambodia, and tie this into wider regional environmental change throughout the Holocene. Analyses shows that the concentration of OC in the sediments is strongly inversely correlated to grainsize. Furthermore, the type of OC is also related to grain size with the clay containing mostly (immature) plant derived OC and sand containing mostly thermally mature derived OC. Finally, analyses indicate that within the plant derived OC relative oxidation is strongly grouped by stratigraphy with the older bound OC more oxidised than younger OC
Development of a modified head and neck quality assurance phantom for use in stereotactic radiosurgery trials
- …
