1,512 research outputs found
The sensory acceptance of fibre-enriched cereal foods:a meta-analysis
Improved understanding of the sensory responses to fibre fortification may assist manufacturers and health promotion efforts. The effects of fibre fortification (or modified ingredients) on sensory acceptability of baked cereal foods (bread, cookies, muffins) were estimated by linear random-effects meta-analysis of twenty eligible studies (869 panellists, 34% male). As little as 2 g per 100 g fortification caused moderate–large reductions in overall acceptability, flavour acceptability, and appearance acceptability in most items, with cookies most negatively affected. Fortification of base nonfortified foods with low initial acceptability improved acceptability; however, at higher basic levels, fortification lowered acceptability. Fortification improved texture acceptability of muffins and bread with low base acceptability, but lowered texture acceptability when base acceptability was high. Flavour improvement of muffins with fortification decreased with increasing base food acceptability. Fibre fortification of baked cereal foods lowers acceptability, but food format and base food acceptability affect the magnitude and direction of responses. Refining fibre fortification approaches could improve consumer uptake
miRNA-140-5p: new avenue for pulmonary arterial hypertension drug development?
Pulmonary arterial hypertension (PAH) is a rare but fatal disease. Pathologically, PAH is characterised by sustained vasoconstriction and progressive obliteration of small pulmonary arteries through a process of medial thickening, intimal fibrosis and the formation of angioproliferative lesions. Current treatments target the sustained vasoconstriction via either the prostacyclin, endothelin or nitric oxide pathway but do little to address the underlying progressive proliferative vascular disease. Dysregulated expression of microRNA (miR) has been identified in PAH and we have recently highlighted reduced miR-140-5p in patients with PAH. Replacement of miR-140-5p attenuated disease in animal models with the regulation of Smurf1, a E3 ubiquitin ligase targeting BMPR2 as one identified mechanism. These data highlight Smurf1 inhibition as a treatment for PAH
VLBI-SLR Combination Solution Using GEODYN
We would like to generate a multi-technique solution combining all of the geodetic techniques (VLBI, SLR, GPS, and DORIS) using the same software and using the same a priori models. Here we use GEODYN software and consider only the VLBI-SLR combination. Here we report initial results of our work on the combination. We first performed solutions with GEODYN using only VLBI data and found that VLBI EOP solution results produced with GEODYN agree with results using CALC/SOLVE at the 1-sigma level. We then combined the VLBI normal equations in GEODYN with weekly SLR normal equations for the period 2007-2008. Agreement of estimated Earth orientation parameters with IERS C04 were not significantly different for the VLBI-only, SLR-only, and VLBI+SLR solution
Topography of the Lunar Poles and Application to Geodesy with the Lunar Reconnaissance Orbiter
The Lunar Orbiter Laser Altimeter (LOLA) [1] onboard the Lunar Reconnaissance Orbiter (LRO) [2] has been operating continuously since July 2009 [3], accumulating approx.5.4 billion measurements from 2 billion on-orbit laser shots. LRO s near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, which are each sampled every ~2h. With more than 10,000 orbits, high-resolution maps can be constructed [4] and studied [5]. However, this requires careful processing of the raw data, as subtle errors in the spacecraft position and pointing can lead to visible artifacts in the final map. In other locations on the Moon, ground tracks are subparallel and longitudinal separations are typically a few hundred meters. Near the poles, the track intersection angles can be large and the inter-track spacing is small (above 80 latitude, the effective resolution is better than 50m). Precision Orbit Determination (POD) of the LRO spacecraft [6] was performed to satisfy the LOLA and LRO mission requirements, which lead to a significant improvement in the orbit position knowledge over the short-release navigation products. However, with pixel resolutions of 10 to 25 meters, artifacts due to orbit reconstruction still exist. Here, we show how the complete LOLA dataset at both poles can be adjusted geometrically to produce a high-accuracy, high-resolution maps with minimal track artifacts. We also describe how those maps can then feedback to the POD work, by providing topographic base maps with which individual LOLA altimetric measurements can be contributing to orbit changes. These direct altimetry constraints improve accuracy and can be used more simply than the altimetric crossovers [6]
NS2 is dispensable for efficient assembly of hepatitis C virus-like particles in a bipartite trans-encapsidation system.
Infectious hepatitis C virus (HCV) particle production in the genotype 2a JFH-1-based cell culture system involves non-structural proteins in addition to canonical virion components. NS2 has been proposed to act as a protein adaptor, co-ordinating the early stages of virion assembly. However, other studies have identified late-acting roles for this protein, making its precise involvement in infectious particle production unclear. Using a robust, bipartite trans-encapsidation system based upon baculovirus expression of HCV structural proteins, we have generated HCV-like particles (HCV-LP) in the absence of NS2 with overt similarity to wild-type virions. HCV-LP could transduce naive cells with trans-encapsidated subgenomic replicon RNAs and shared similar biochemical and biophysical properties with JFH-1 HCV. Both genotype 1b and JFH-1 intracellular HCV-LP were produced in the absence of NS2, whereas restoring NS2 to the JFH-1 system dramatically enhanced secreted infectivity, consistent with a late-acting role. Our system recapitulated authentic HCV particle assembly via trans-complementation of bicistronic, NS2-deleted, chimeric HCV, which is otherwise deficient in particle production. This closely resembled replicon-mediated NS2 trans-complementation, confirming that baculovirus expression of HCV proteins did not unduly affect particle production. Furthermore, this suggests that separation of structural protein expression from replicating HCV RNAs that are destined to be packaged alleviates an early stage requirement for NS2 during particle formation. This highlights our current lack of understanding of how NS2 mediates assembly, yet comparison of full-length and bipartite systems may provide further insight into this process
High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data
We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models
Flow velocity measurement using a spatial averaging method with two-dimensional flexural ultrasonic array technology
Accurate average flow velocity determination is essential for flow measurement in many industries, including automotive, chemical, and oil and gas. The ultrasonic transit-time method is common for average flow velocity measurement, but current limitations restrict measurement accuracy, including fluid dynamic effects from unavoidable phenomena such as turbulence, swirls or vortices, and systematic flow meter errors in calibration or configuration. A new spatial averaging method is proposed, based on flexural ultrasonic array transducer technology, to improve measurement accuracy and reduce the uncertainty of the measurement results. A novel two-dimensional flexural ultrasonic array transducer is developed to validate this measurement method, comprising eight individual elements, each forming distinct paths to a single ultrasonic transducer. These paths are distributed in two chordal planes, symmetric and adjacent to a diametral plane. It is demonstrated that the root-mean-square deviation of the average flow velocity, computed using the spatial averaging method with the array transducer is 2.94%, which is lower compared to that of the individual paths ranging from 3.65% to 8.87% with an average of 6.90%. This is advantageous for improving the accuracy and reducing the uncertainty of classical single-path ultrasonic flow meters, and also for conventional multi-path ultrasonic flow meters through the measurement via each flow plane with reduced uncertainty. This research will drive new developments in ultrasonic flow measurement in a wide range of industrial applications. View Full-Tex
Employing transposon mutagenesis to investigate foot-and-mouth disease virus replication
Probing the molecular interactions within the foot-and-mouth disease virus (FMDV) RNA replication complex has been restricted in part to the lack of suitable reagents. Random insertional mutagenesis has proven an excellent method to reveal domains of proteins essential for viral replication as well as locations that can tolerate small genetic insertions. Such insertion sites can be subsequently adapted by the incorporation of commonly used epitope tags and so facilitate their detection with commercial available reagents. In this study, we use random transposon-mediated mutagenesis to produce a library of 15 nucleotide insertions in the FMDV nonstructural polyprotein. Using a replicon-based assay we isolated multiple replication-competent as well as replication-defective insertions. We have adapted the replication competent insertion sites for the successful incorporation of epitope tags within FMDV non-structural proteins, for the use in a variety of downstream assays. Additionally, we show that replication of some of the replication-defective insertion mutants can be rescued by co-transfection of a 'helper' replicon, demonstrating a novel use of random mutagenesis to identify inter-genomic trans-complementation. Both the epitope tags and replication-defective insertions identified here will be valuable tools for probing interactions within picornaviral replication complexes
Sex-dependent influence of endogenous estrogen in pulmonary hypertension
Rationale: The incidence of pulmonary arterial hypertension (PAH) is greater in women suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males exogenously administered estrogen can protect against PH; however in models that display female susceptibility estrogens may play a causative role.
Objectives: To clarify the influence of endogenous estrogen and gender in PH and assess the therapeutic potential of a clinically available aromatase inhibitor.
Methods: We interrogated the effect of reduced endogenous estrogen in males and females using the aromatase inhibitor, anastrozole, in two models of PH; the hypoxic mouse and Sugen 5416/hypoxic rat. We also determined the effects of gender on pulmonary expression of aromatase in these models and in lungs from PAH patients.
Results: Anastrozole attenuated PH in both models studied, but only in females. To verify this effect was due to reduced estrogenic activity we confirmed that in hypoxic mice inhibition of estrogen receptor alpha also has a therapeutic effect specifically in females. Female rodent lung displays increased aromatase and decreased BMPR2 and Id1 expression compared to male. Anastrozole treatment reversed the impaired BMPR2 pathway in females. Increased aromatase expression was also detected in female human pulmonary artery smooth muscle cells compared to male.
Conclusions: The unique phenotype of female pulmonary arteries facilitates the therapeutic effects of anastrozole in experimental PH confirming a role for endogenous estrogen in the disease pathogenesis in females and suggests aromatase inhibitors may have therapeutic potential
Introducing novel approaches for examining the variability of individuals' physical activity
Tudor-Locke and colleagues previously assessed steps/day for 1 year. The aim of this study was to use this data set to introduce a novel approach for the investigation of whether individual's physical activity exhibits periodicity fluctuating round a mean and, if so, the degree of fluctuation and whether the mean changes over time. Twenty-three participants wore a pedometer for 365 days, recorded steps/day and whether the day was a workday. Fourier transform of each participant's daily steps data showed the physical activity had a periodicity of 7 days in half of the participants, matching the periodicity of the workday pattern. Activity level remained stable in half of the participants, decreased in ten participants and increased in two. In conclusion, the 7-day periodicity of activity in half of the participants and correspondence with the workday pattern suggest a social or environmental influence. The novel analytical approach introduced herein allows the determination of the periodicity of activity, the degree of variability in activity that is tolerated during day-to-day life and whether the activity level is stable. Results from the use of these methodologies in larger data sets may enable a more focused approach to the design of interventions that aim to increase activity
- …
