6,571 research outputs found
A Mass Formula from Light to Hypernuclei
Simultaneous description of ordinary and hypernuclei masses by a single mass
formula has been a great challenge in nuclear physics. Hyperon-separation
energies of about forty Lambda(), three
Lambda-Lambda(), one Sigma() and seven Cascade()
hypernuclei have been experimentally found. Many of these nuclei are of light
masses. We prescribe a new mass formula, called BWMH, which describes the
normal and hypernuclei on the same footing. It is based on the
modified-Bethe-Weizs\"acker mass formula (BWM). BWM is basically an extension
of the Bethe-Weizs\"acker mass formula (BW) for light nuclei. The parameters of
BWM were optimized by fitting about 3000 normal nuclei available recently. The
original Bethe-Weizs\"acker mass formula (BW) was designed for medium and heavy
mass nuclei and it fails for light nuclei. Two earlier works on hypernuclei
based on this BW show some limitations. The BWMH gives improved agreement with
the experimental data for the line of stability, one-neutron separation energy
versus neutron number spectra of normal nuclei, and the hyperon-separation
energies from hypernuclei. The drip lines are modified for addition of a
hyperon in a normal nucleus.Comment: Presented at the "XXIX Mazurian Lakes Conference on Physics: Nuclear
Physics and the Fundamental Processes, Piaski, Poland, August 30 - September
6, 2005." (7 pages, 1 Table, 1 Figure
A peridynamic theory for linear elastic shells
A state-based peridynamic formulation for linear elastic shells is presented.
The emphasis is on introducing, possibly for the first time, a general surface
based peridynamic model to represent the deformation characteristics of
structures that have one physical dimension much smaller than the other two. A
new notion of curved bonds is exploited to cater for force transfer between the
peridynamic particles describing the shell. Starting with the three dimensional
force and deformation states, appropriate surface based force, moment and
several deformation states are arrived at. Upon application on the curved
bonds, such states beget the necessary force and deformation vectors governing
the motion of the shell. Correctness of our proposal on the peridynamic shell
theory is numerically assessed against static deformation of spherical and
cylindrical shells and flat plates
Alpha decay half-lives of new superheavy elements
The lifetimes of decays of the recently produced isotopes of the
elements 112, 114, 116 and the element and of some decay products
have been calculated theoretically within the WKB approximation using
microscopic -nucleus interaction potentials. These nuclear potentials
have been obtained by folding the densities of the and the daughter
nuclei with the M3Y effective interaction, supplemented by a zero-range
pseudo-potential for exchange along with the density dependence. Spherical
charge distributions have been used for calculating the Coulomb interaction
potentials. These calculations provide reasonable estimates for the observed
decay lifetimes and thus provide reliable predictions for other
superheavies.Comment: 7 page
- …
