6,571 research outputs found

    A Mass Formula from Light to Hypernuclei

    Full text link
    Simultaneous description of ordinary and hypernuclei masses by a single mass formula has been a great challenge in nuclear physics. Hyperon-separation energies of about forty Lambda(Λ\Lambda), three Lambda-Lambda(ΛΛ\Lambda\Lambda), one Sigma(Σ\Sigma) and seven Cascade(Ξ\Xi) hypernuclei have been experimentally found. Many of these nuclei are of light masses. We prescribe a new mass formula, called BWMH, which describes the normal and hypernuclei on the same footing. It is based on the modified-Bethe-Weizs\"acker mass formula (BWM). BWM is basically an extension of the Bethe-Weizs\"acker mass formula (BW) for light nuclei. The parameters of BWM were optimized by fitting about 3000 normal nuclei available recently. The original Bethe-Weizs\"acker mass formula (BW) was designed for medium and heavy mass nuclei and it fails for light nuclei. Two earlier works on hypernuclei based on this BW show some limitations. The BWMH gives improved agreement with the experimental data for the line of stability, one-neutron separation energy versus neutron number spectra of normal nuclei, and the hyperon-separation energies from hypernuclei. The drip lines are modified for addition of a Λ\Lambda hyperon in a normal nucleus.Comment: Presented at the "XXIX Mazurian Lakes Conference on Physics: Nuclear Physics and the Fundamental Processes, Piaski, Poland, August 30 - September 6, 2005." (7 pages, 1 Table, 1 Figure

    A peridynamic theory for linear elastic shells

    Full text link
    A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introducing, possibly for the first time, a general surface based peridynamic model to represent the deformation characteristics of structures that have one physical dimension much smaller than the other two. A new notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describing the shell. Starting with the three dimensional force and deformation states, appropriate surface based force, moment and several deformation states are arrived at. Upon application on the curved bonds, such states beget the necessary force and deformation vectors governing the motion of the shell. Correctness of our proposal on the peridynamic shell theory is numerically assessed against static deformation of spherical and cylindrical shells and flat plates

    Alpha decay half-lives of new superheavy elements

    Full text link
    The lifetimes of α\alpha decays of the recently produced isotopes of the elements 112, 114, 116 and the element 294118^{294}118 and of some decay products have been calculated theoretically within the WKB approximation using microscopic α\alpha-nucleus interaction potentials. These nuclear potentials have been obtained by folding the densities of the α\alpha and the daughter nuclei with the M3Y effective interaction, supplemented by a zero-range pseudo-potential for exchange along with the density dependence. Spherical charge distributions have been used for calculating the Coulomb interaction potentials. These calculations provide reasonable estimates for the observed α\alpha decay lifetimes and thus provide reliable predictions for other superheavies.Comment: 7 page
    corecore