1,521 research outputs found

    Collector Failures on 350 MHz, 1.2 MW CW Klystrons at the Low Energy Demonstration Accelerator (LEDA)

    Get PDF
    We are currently operating the front end of the accelerator production of tritium (APT) accelerator, a 7 MeV radio frequency quadrapole (RFQ) using three, 1.2 MW CW klystrons. These klystrons are required and designed to dissipate the full beam power in the collector. The klystrons have less than 1500 operational hours. One collector has failed and all collectors are damaged. This paper will discuss the damage and the difficulties in diagnosing the cause. The collector did not critically fail. Tube operation was still possible and the klystron operated up to 70% of full beam power with excellent vacuum. The indication that finally led us to the collector failure was variable emission. This information will be discussed. A hydrophonic system was implemented to diagnose collector heating. The collectors are designed to allow for mixed-phase cooling and with the hydrophonic test equipment we are able to observe: normal, single-phase cooling, mixed-phase cooling, and a hard boil. These data will be presented. The worst case beam profile from a collector heating standpoint is presented. The paper will also discuss the steps taken to halt the collector damage on the remaining 350 MHz klystrons and design changes that are being implemented to correct the problem.Comment: LINAC2000 conference paper THE1

    LDEF fiber-composite materials characterization

    Get PDF
    Degradation of a number of fiber/polymer composites located on the leading and trailing surfaces of LDEF where the atomic oxygen (AO) fluences ranged from 10(exp 22) to 10(exp 4) atoms/cm(sup 2), respectively, was observed and compared. While matrices of the composites on the leading edge generally exhibited considerable degradation and erosion-induced fragmentation, this 'asking' process was confined to the near surface regions because these degraded structures acted as a 'protective blanket' for deeper-lying regions. This finding leads to the conclusion that simple surface coatings can significantly retard AO and other combinations of degrading phenomena in low-Earth orbit. Micrometeoroid and debris particle impacts were not a prominent feature on the fiber composites studied and apparently do not contribute in a significant way to their degradation or alteration in low-Earth orbit

    IMPACT: The Journal of the Center for Interdisciplinary Teaching and Learning. Volume 9, Issue 1, Winter 2020

    Get PDF
    Explicitly established to foreground interdisciplinary teaching and learning, Impact also welcomes evidence and discussion of experiential learning. Often the two – interdisciplinary teaching and experiential learning – co-exist. Yet even when they do not, both practices model how to think in myriad ways and to notice how knowledge is constructed. As our winter 2019 issue makes clear, interdisciplinary teaching and learning and experiential learning often begin with questions. Why does it matter that students grapple directly with archival material? What happens when undergraduates practice psychology by training dogs? Do students understand financial literacy? This issue also asks questions about students’ reading habits and faculty expectations of them as readers

    Development of integrated thermionic circuits for high-temperature applications

    Get PDF
    Integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 C are studied. A set of practical design and performance equations is demonstrated. Experimental results are discussed in which both devices and simple circuits were successfully operated in 5000 C environments for extended periods. It is suggested that ITC's may become an important technology for high temperature instrumentation and control systems in geothermal and other high temperature environments

    Roles of binding elements, FOXL2 domains, and interactions with cJUN and SMADs in regulation of FSHβ.

    Get PDF
    We previously identified FOXL2 as a critical component in FSHβ gene transcription. Here, we show that mice deficient in FOXL2 have lower levels of gonadotropin gene expression and fewer LH- and FSH-containing cells, but the same level of other pituitary hormones compared to wild-type littermates, highlighting a role of FOXL2 in the pituitary gonadotrope. Further, we investigate the function of FOXL2 in the gonadotrope cell and determine which domains of the FOXL2 protein are necessary for induction of FSHβ transcription. There is a stronger induction of FSHβ reporter transcription by truncated FOXL2 proteins, but no induction with the mutant lacking the forkhead domain. Specifically, FOXL2 plays a role in activin induction of FSHβ, functioning in concert with activin-induced SMAD proteins. Activin acts through multiple promoter elements to induce FSHβ expression, some of which bind FOXL2. Each of these FOXL2-binding sites is either juxtaposed or overlapping with a SMAD-binding element. We determined that FOXL2 and SMAD4 proteins form a higher order complex on the most proximal FOXL2 site. Surprisingly, two other sites important for activin induction bind neither SMADs nor FOXL2, suggesting additional factors at work. Furthermore, we show that FOXL2 plays a role in synergistic induction of FSHβ by GnRH and activin through interactions with the cJUN component of the AP1 complex that is necessary for GnRH responsiveness. Collectively, our results demonstrate the necessity of FOXL2 for proper FSH production in mice and implicate FOXL2 in integration of transcription factors at the level of the FSHβ promoter

    Early Signaling in Primary T Cells Activated by Antigen Presenting Cells Is Associated with a Deep and Transient Lamellal Actin Network

    Get PDF
    Cellular signaling transduction critically depends on molecular interactions that are in turn governed by dynamic subcellular distributions of the signaling system components. Comprehensive insight into signal transduction requires an understanding of such distributions and cellular structures driving them. To investigate the activation of primary murine T cells by antigen presenting cells (APC) we have imaged more than 60 signaling intermediates during T cell stimulation with microscopy across resolution limits. A substantial number of signaling intermediates associated with a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell, as characterized in detail here. By mapping the more than 60 signaling intermediates onto the spatiotemporal features of cell biological structures, the lamellum and other ones previously described, we also define distinct spatial and temporal characteristics of T cell signal initiation, amplification, and core signaling in the activation of primary T cells by APCs. These characteristics differ substantially from ones seen when T cells are activated using common reductionist approaches
    corecore