4,481 research outputs found

    Spin-Phonon coupling parameters from maximally localized Wannier functions and first principles electronic structure: the case of durene single crystal

    Full text link
    Spin-orbit interaction is an important vehicle for spin relaxation. At finite temperature lattice vibrations modulate the spin-orbit interaction and thus generate a mechanism for spin-phonon coupling, which needs to be incorporated in any quantitative analysis of spin transport. Starting from a density functional theory \textit{ab initio} electronic structure, we calculate spin-phonon matrix elements over the basis of maximally localized Wannier functions. Such coupling terms form an effective Hamiltonian to be used to extract thermodynamic quantities, within a multiscale approach particularly suitable for organic crystals. The symmetry of the various matrix elements are analyzed by using the Γ\Gamma-point phonon modes of a one-dimensional chain of Pb atoms. Then the method is employed to extract the spin-phonon coupling of solid durene, a high-mobility crystal organic semiconducting. Owing to the small masses of carbon and hydrogen spin-orbit is weak in durene and so is the spin-phonon coupling. Most importantly we demonstrate that the largest contribution to the spin-phonon interaction originates from Holstein-like phonons, namely from internal molecular vibrations

    Nonlinear localized modes in PT-symmetric optical media with competing gain and loss

    Full text link
    The existence and stability of the nonlinear spatial localized modes are investigated in parity-time symmetric optical media characterized by a generic complex hyperbolic refractive index distribution with competing gain and loss profile. The exact analytical expressions of the localized modes are found for all values of the competing parameter and in the presence of both the self-focusing and self-defocusing Kerr nonlinearity. The effect of competing gain/loss profile on the stability structure of these localized modes are discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. The spatial localized modes in two-dimensional geometry as well as the transverse power-flow density associated with these localized modes are also examined.Comment: Final versio

    Scattering in a varying mass PT symmetric double heterojunction

    Full text link
    We observe that the reflection and transmission coefficients of a particle within a double, PT symmetric heterojunction with spatially varying mass, show interesting features, depending on the degree of non Hermiticity, although there is no spontaneous breakdown of PT symmetry. The potential profile in the intermediate layer is considered such that it has a non vanishing imaginary part near the heterojunctions. Exact analytical solutions for the wave function are obtained, and the reflection and transmission coefficients are plotted as a function of energy, for both left as well as right incidence. As expected, the spatial dependence on mass changes the nature of the scattering solutions within the heterojunctions, and the space-time (PT) symmetry is responsible for the left-right asymmetry in the reflection and transmission coefficients. However, the non vanishing imaginary component of the potential near the heterojunctions gives new and interesting results.Comment: 7 pages, 8 figure

    Photo nuclear energy loss term for muon-nucleus interactions based on xi scaling model of QCD

    Get PDF
    Extensive air showers (EMC) experiments discovered a significant deviation of the ratio of structure functions of iron and deuteron from unity. It was established that the quark parton distribution in nuclei are different from the corresponding distribution in the nucleus. It was examined whether these results have an effect on the calculation of photo nucleus energy loss term for muon-nucleus nuclear interaction. Though the EMC and SLAC data were restricted to rather large q sq region it is expected that the derivation would persist even in the low q sq domain. For the ratio of iron and deuteron structure function a rather naive least square fit of the form R(x) = a + bx was taken and it is assumed that the formula is valid for the whole q sq region the absence of any knowledge of R(x) for small q sq

    Effective-mass Schroedinger equation and generation of solvable potentials

    Full text link
    A one-dimensional Schr\"odinger equation with position-dependent effective mass in the kinetic energy operator is studied in the framework of an so(2,1)so(2,1) algebra. New mass-deformed versions of Scarf II, Morse and generalized P\"oschl-Teller potentials are obtained. Consistency with an intertwining condition is pointed out.Comment: 9 pages, no figure, communication at "2nd International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics", Prague, Czech Republic, June 14-16,200
    corecore