2,533 research outputs found
Learning Combinations of Activation Functions
In the last decade, an active area of research has been devoted to design
novel activation functions that are able to help deep neural networks to
converge, obtaining better performance. The training procedure of these
architectures usually involves optimization of the weights of their layers
only, while non-linearities are generally pre-specified and their (possible)
parameters are usually considered as hyper-parameters to be tuned manually. In
this paper, we introduce two approaches to automatically learn different
combinations of base activation functions (such as the identity function, ReLU,
and tanh) during the training phase. We present a thorough comparison of our
novel approaches with well-known architectures (such as LeNet-5, AlexNet, and
ResNet-56) on three standard datasets (Fashion-MNIST, CIFAR-10, and
ILSVRC-2012), showing substantial improvements in the overall performance, such
as an increase in the top-1 accuracy for AlexNet on ILSVRC-2012 of 3.01
percentage points.Comment: 6 pages, 3 figures. Published as a conference paper at ICPR 2018.
Code:
https://bitbucket.org/francux/learning_combinations_of_activation_function
Reduced formulation of a steady fluid-structure interaction problem with parametric coupling
We propose a two-fold approach to model reduction of fluid-structure
interaction. The state equations for the fluid are solved with reduced basis
methods. These are model reduction methods for parametric partial differential
equations using well-chosen snapshot solutions in order to build a set of
global basis functions. The other reduction is in terms of the geometric
complexity of the moving fluid-structure interface. We use free-form
deformations to parameterize the perturbation of the flow channel at rest
configuration. As a computational example we consider a steady fluid-structure
interaction problem: an incmpressible Stokes flow in a channel that has a
flexible wall.Comment: 10 pages, 3 figure
Automated Pruning for Deep Neural Network Compression
In this work we present a method to improve the pruning step of the current
state-of-the-art methodology to compress neural networks. The novelty of the
proposed pruning technique is in its differentiability, which allows pruning to
be performed during the backpropagation phase of the network training. This
enables an end-to-end learning and strongly reduces the training time. The
technique is based on a family of differentiable pruning functions and a new
regularizer specifically designed to enforce pruning. The experimental results
show that the joint optimization of both the thresholds and the network weights
permits to reach a higher compression rate, reducing the number of weights of
the pruned network by a further 14% to 33% compared to the current
state-of-the-art. Furthermore, we believe that this is the first study where
the generalization capabilities in transfer learning tasks of the features
extracted by a pruned network are analyzed. To achieve this goal, we show that
the representations learned using the proposed pruning methodology maintain the
same effectiveness and generality of those learned by the corresponding
non-compressed network on a set of different recognition tasks.Comment: 8 pages, 5 figures. Published as a conference paper at ICPR 201
- …
