1,036 research outputs found
Nanotag luminescent fingerprint anti-counterfeiting technology
We describe a method to fabricate, transfer and validate via image processing nanofibre-based, unique security marks (‘nanotags’) for anti-counterfeiting purposes. Epitaxial surface growth of oligophenylenes on a heated muscovite mica crystal results in a thin film of mutually aligned nanofibres with dimensions of tens of nanometres in height, hundreds of nanometres in width and tens to hundreds of micrometres in length. By applying a shadow mask, a film pattern is generated which contains only sparse, randomly grown nanofibres, which in turn represent a unique ‘fingerprint’ of the growth area. This fingerprint can be transferred on an adhesive tape as a label of a product, imaged using low magnification microscopy, digitalised and stored in a database. Infrared surface heating, enforced cooling and load lock transfer makes the fabrication process fast and scalable to mass production
Influence of geometry on hydrodynamic focusing and long-range fluid behavior in PDMS microfluidic chips
Details of hydrodynamic focusing in a 2D microfluidic channel-junction are investigated experimentally and theoretically, especially the effect on the focusing width of volumetric flow ratio r between main and side channels, as well as angle θ between channels. A non-linear relationship is observed where the focus width decreases rapidly with increasing r and levels off at higher values. For the dependence on θ, results from both experiments and modeling show that an increased focusing effect is obtained as θ approaches 90°. Long-range focusing is explored along a 1 cm long channel and it is observed that in the middle section of the channel, a smaller θ induces less divergence. This effect is of importance for microfluidic systems utilizing hydrodynamic focusing in long, straight channels
Mapping of electromagnetic fields enhanced by gold nanostructures
Laser ablation of an ‘imaging’ polymer layer allows near-field mapping of metal nanostructures with subdiffraction resolutio
Efficient Roll-on Transfer Technique for Well-Aligned Organic Nanofibers
A transfer technique enabling efficient device integration of fragile organic nanostructures is presented. The technique is capable of transferring organic nanofibers to arbitrary substrates, the preservation of nanofiber morphology is demonstrated, and the optical properties are unaffected or even improved by the transfer
Quantum Control of Interacting Bosons in Periodic Optical Lattice
We study the avoided crossings in the dynamics of quantum controlled
excitations for an interacting two-boson system in an optical lattice.
Specifically, we perform numerical simulations of quantum control in this
system where driving pulses connect the undriven stationary states in a manner
characteristic of Stimulated Raman Adiabatic Passage (STIRAP). We demonstrate
that the dynamics of such a transition is affected by chaos induced avoided
crossings, resulting in a loss in coherence of the final outcome in the
adiabatic limit.Comment: Accepted for publication in Physica E. Typo corrections to final
versio
The Role of Charge Transfer State on the Reduced Langevin Recombination in Organic Solar Cells:A Theoretical Study
[Image: see text] Reduced Langevin recombination has been observed in organic solar cells (OSCs) for many years, but its origin is still unclear. A recent work by Burke et al. (Adv. Energy Mater.2015, 5, 1500123-1) was inspired by this reduced Langevin recombination, and they proposed an equilibrium model of charge-transfer (CT) states that correlates the open-circuit voltage of OSCs with experimentally available device parameters. In this work, we extend Burke et al.’s CT model further and for the first time directly correlate the reduced Langevin recombination with the energetic and dynamic behavior of the CT state. Recombination through CT states leads in a straightforward manner to a decrease in the Langevin reduction factor with increasing temperature, without explicit consideration of the temperature dependence of the mobility. To verify the correlation between the CT states and reduced Langevin recombination, we incorporated this CT model and the reduced Langevin model into drift-diffusion simulations of a bilayer OSC. The simulations not only successfully reproduced realistic current–voltage (J–V) characteristics of the bilayer OSC, but also demonstrate that the two models consistently lead to same value of the apparent Langevin reduction factor
Fragmentation pathways of nanofractal structures on surface
We present a detailed systematical theoretical analysis of the post-growth
processes occurring in nanofractals grown on surface. For this study we
developed a method which accounts for the internal dynamics of particles in a
fractal. We demonstrate that particle diffusion and detachment controls the
shape of the emerging stable islands on surface. We consider different
scenarios of fractal post-growth relaxation and analyze the time evolution of
the island's morphology. The results of our calculations are compared with
available experimental observations, and experiments in which the post-growth
relaxation of deposited nanostructures can be probed are suggested.Comment: 34 pages, 11 figure
Organic nanofiber-loaded surface plasmon-polariton waveguides
We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and characterize dispersion properties of such waveguides using leakage-radiation microscopy
- …
