610 research outputs found

    Quintessence or Phoenix?

    Get PDF
    We show that it is impossible to determine the state equation of quintessence models on the basis of pure observational SNIa data. An independent estimate of ΩM0\Omega_{M0} is necessary. Also in this most favourable case the situation can be problematic.Comment: 7 pages, 4 figures - [email protected]

    Testing a quintessence model with CMBR peaks locations

    Get PDF
    We show that a model of quintessence with exponential potential, which allows to obtain general exact solutions, can generate location of CMBR peaks which are fully compatible with present observational data

    Testing an exact f(R)f(R)-gravity model at Galactic and local scales

    Full text link
    The weak field limit for a pointlike source of a f(R)R3/2f(R) \propto R^{3/2}-gravity model is studied. We aim to show the viability of such a model as a valid alternative to GR + dark matter at Galactic and local scales. Without considering dark matter, within the weak field approximation, we find general exact solutions for gravity with standard matter, and apply them to some astrophysical scales, recovering the consistency of the same f(R)f(R)-gravity model with cosmological results.}{In particular, we show that it is possible to obtain flat rotation curves for galaxies, [and consistency with] Solar System tests, as in the so-called "Chameleon Approach". In fact, the peripheral velocity v v_\infty is shown to be expressed as v=λM v_\infty = \lambda \sqrt{M}, so that the Tully-Fisher relation is recovered. The results point out the possibility of achieving alternative theories of gravity in which exotic ingredients like dark matter and dark energy are not necessary, while their coarse-grained astrophysical and cosmological effects can be related to a geometric origin.Comment: 8 pages, 2 figures, accepted in Astron. & Astrop

    Testing a quintessence model with CMBR peaks location

    Get PDF
    We show that a model of quintessence with exponential potential, which allows to obtain general exact solutions, can generate locations of CMBR peaks which are fully compatible with present observational dataComment: 7 pages, no figure

    The GRBs Hubble diagram in quintessential cosmological models

    Full text link
    It has been recently empirically established that some of the directly observed pa- rameters of GRBs are correlated with their important intrinsic parameters, like the luminosity or the total radiated energy. These correlations were derived, tested and used to standardize GRBs, i.e., to derive their luminosity or radiated energy from one or more observables, in order to construct an estimated fiducial Hubble diagram, assuming that radiation propagates in the standard LambdaCDM cosmological model. We extend these analyses by considering more general models of dark energy, and an updated data set of high redshift GRBs. We show that the correlation parameters only weakly depend on the cosmological model. Moreover we apply a local regression technique to estimate, in a model independent way, the distance modulus from the recently updated SNIa sample containing 307 SNIa (Astier et al. 2006), in order to calibrate the GRBs 2D correlations, considering only GRBs with z <1.4. The derived calibration parameters are used to construct a new GRBs Hubble diagram, which we call the calibrated GRBs HD. We also compare the estimated and calibrated GRBs HDs. It turns out that for the common GRBs they are fully statistically consistent, thus indicating that both of them are not affected by any systematic bias induced by the different standardizing procedures. We finally apply our methods to calibrate 95 long GRBs with the well-known Amati relation and construct the estimated and calibrated GRBs Hubble diagram that extends to redshifts z ~ 8. Even in this case there is consistency between these datasets. This means that the high redshift GRBs can be used to test different models of dark energy. We used the calibrated GRBs HD to constrain our quintessential cosmological model and derived the likelihood values of Omega_m and w(0).Comment: 13 pages, 12 figures, 1 table. Accepted for publication in MNRA

    Improved Action Functionals in Non-Perturbative Quantum Gravity

    Full text link
    Models of gravity with variable G and Lambda have acquired greater relevance after the recent evidence in favour of the Einstein theory being non-perturbatively renormalizable in the Weinberg sense. The present paper builds a modified Arnowitt-Deser-Misner (ADM) action functional for such models which leads to a power-law growth of the scale factor for pure gravity and for a massless phi**4 theory in a Universe with Robertson-Walker symmetry, in agreement with the recently developed fixed-point cosmology. Interestingly, the renormalization-group flow at the fixed point is found to be compatible with a Lagrangian description of the running quantities G and Lambda.Comment: Latex file. Record without file already exists on SLAC-SPIRES, and hence that record and the one for the present arxiv submission should become one record onl

    Noether symmetry approach to scalar-field-dominated cosmology with dynamically evolving G and Lambda

    Full text link
    This paper studies the cosmological equations for a scalar field Phi in the framework of a quantum gravity modified Einstein--Hilbert Lagrangian where G and Lambda are dynamical variables. It is possible to show that there exists a Noether symmetry for the point Lagrangian describing this scheme in a FRW universe. Our main result is that the Noether Symmetry Approach fixes both Lambda = Lambda(G) and the potential V = V(Phi) of the scalar field. The method does not lead, however, to easily solvable equations, by virtue of the higher dimensionality of the reduced configuration space involved, the additional variable being the running Newton coupling.Comment: 10 pages, Revtex

    Exact f(R)f(R)-cosmological model coming from the request of the existence of a Noether symmetry

    Full text link
    We present an f(R)f(R)-cosmological model with an exact analytic solution, coming from the request of the existence of a Noether symmetry, which is able to describe a dust-dominated decelerated phase before the current accelerated phase of the universe.Comment: 4 pages, 2 figures, Contribution to the proceedings of Spanish Relativity Meeting 2008, Salamanca, Sapin, 15-19 September 200

    Ultrafast Modification of the Polarity at LaAlO3_3/SrTiO3_3 Interfaces

    Full text link
    Oxide growth with semiconductor-like accuracy has led to atomically precise thin films and interfaces that exhibit a plethora of phases and functionalities not found in the oxide bulk material. This yielded spectacular discoveries such as the conducting, magnetic or even superconducting LaAlO3_3/SrTiO3_3 interfaces separating two prototypical insulating perovskite materials. All these investigations, however, consider the static state at the interface, although studies on fast oxide interface dynamics would introduce a powerful degree of freedom to understanding the nature of the LaAlO3_3/SrTiO3_3 interface state. Here we show that the polarization state at the LaAlO3_3/SrTiO3_3 interface can be optically enhanced or attenuated within picoseconds. Our observations are explained by a model based on charge propagation effects in the interfacial vicinity and transient polarization buildup at the interface
    corecore