284 research outputs found

    Momentum Transfer by Laser Ablation of Irregularly Shaped Space Debris

    Get PDF
    Proposals for ground-based laser remediation of space debris rely on the creation of appropriately directed ablation-driven impulses to either divert the fragment or drive it into an orbit with a perigee allowing atmospheric capture. For a spherical fragment, the ablation impulse is a function of the orbital parameters and the laser engagement angle. If, however, the target is irregularly shaped and arbitrarily oriented, new impulse effects come into play. Here we present an analysis of some of these effects.Comment: 8 pages, Proceedings of the 2010 International High-Power Laser Ablation Conferenc

    Pulsed Laser Interactions with Space Debris: Target Shape Effects

    Full text link
    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes. We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. We address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.Comment: 51 pages, 14 figures, to appear in Advances in Space Researc

    Removing Orbital Debris with Lasers

    Full text link
    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.Comment: 37 pages, 15 figures, in preparation for submission to Advances in Space Researc

    The effect of self-focusing on laser space-debris cleaning

    Get PDF
    A ground-based laser system for space-debris cleaning will use powerful laser pulses that can self-focus while propagating through the atmosphere. We demonstrate that for the relevant laser parameters, this self-focusing can noticeably decrease the laser intensity on the target. We show that the detrimental effect can be, to a great extent, compensated for by applying the optimal initial beam defocusing. The effect of laser elevation on the system performance is discussed

    Feasibility of High-Power Diode Laser Array Surrogate to Support Development of Predictive Laser Lethality Model

    Get PDF
    Predictive modeling and simulation of high power laser-target interactions is sufficiently undeveloped that full-scale, field testing is required to assess lethality of military directed-energy (DE) systems. The cost and complexity of such testing programs severely limit the ability to vary and optimize parameters of the interaction. Thus development of advanced simulation tools, validated by experiments under well-controlled and diagnosed laboratory conditions that are able to provide detailed physics insight into the laser-target interaction and reduce requirements for full-scale testing will accelerate development of DE weapon systems. The ultimate goal is a comprehensive end-to-end simulation capability, from targeting and firing the laser system through laser-target interaction and dispersal of target debris; a 'Stockpile Science' - like capability for DE weapon systems. To support development of advanced modeling and simulation tools requires laboratory experiments to generate laser-target interaction data. Until now, to make relevant measurements required construction and operation of very high power and complex lasers, which are themselves costly and often unique devices, operating in dedicated facilities that don't permit experiments on targets containing energetic materials. High power diode laser arrays, pioneered by LLNL, provide a way to circumvent this limitation, as such arrays capable of delivering irradiances characteristic of De weapon requires are self-contained, compact, light weight and thus easily transportable to facilities, such as the High Explosives Applications Facility (HEAF) at Lawrence Livermore National Laboratory (LLNL) where testing with energetic materials can be performed. The purpose of this study was to establish the feasibility of using such arrays to support future development of advanced laser lethality and vulnerability simulation codes through providing data for materials characterization and laser-material interaction models and to validate the accuracy of code predictions. This project was a Feasibility Study under the LLNL Laboratory Directed Research and Development (LDRD) Program

    Powder Bed Layer Characteristics: The Overseen First-Order Process Input

    Get PDF
    A discrete element powder model is used in conjunction with a finite volume melting model on the first layer of a powder bed selective laser melting process

    Laser space debris cleaning:Elimination of detrimental self-focusing effects

    Get PDF
    A ground-based laser system for space debris cleaning requires pulse power well above the critical power for self-focusing in the atmosphere. Self-focusing results in beam quality degradation and is detrimental for the system operation. We demonstrate that, for the relevant laser parameters, when the thickness of the atmosphere is much less than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere produces the phase distortion only. The model thus developed is in very good agreement with numerical modeling. This implies that, by using phase mask or adaptive optics, it may be possible to eliminate almost completely the impact of self-focusing effects in the atmosphere on the laser beam propagation
    corecore