2,341 research outputs found
The Heat Kernel on AdS_3 and its Applications
We derive the heat kernel for arbitrary tensor fields on S^3 and (Euclidean)
AdS_3 using a group theoretic approach. We use these results to also obtain the
heat kernel on certain quotients of these spaces. In particular, we give a
simple, explicit expression for the one loop determinant for a field of
arbitrary spin s in thermal AdS_3. We apply this to the calculation of the one
loop partition function of N=1 supergravity on AdS_3. We find that the answer
factorizes into left- and right-moving super Virasoro characters built on the
SL(2, C) invariant vacuum, as argued by Maloney and Witten on general grounds.Comment: 46 pages, LaTeX, v2: Reference adde
Universality in Systems with Power-Law Memory and Fractional Dynamics
There are a few different ways to extend regular nonlinear dynamical systems
by introducing power-law memory or considering fractional
differential/difference equations instead of integer ones. This extension
allows the introduction of families of nonlinear dynamical systems converging
to regular systems in the case of an integer power-law memory or an integer
order of derivatives/differences. The examples considered in this review
include the logistic family of maps (converging in the case of the first order
difference to the regular logistic map), the universal family of maps, and the
standard family of maps (the latter two converging, in the case of the second
difference, to the regular universal and standard maps). Correspondingly, the
phenomenon of transition to chaos through a period doubling cascade of
bifurcations in regular nonlinear systems, known as "universality", can be
extended to fractional maps, which are maps with power-/asymptotically
power-law memory. The new features of universality, including cascades of
bifurcations on single trajectories, which appear in fractional (with memory)
nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201
Immunity toward H1N1 influenza hemagglutinin of historical and contemporary strains suggests protection and vaccine failure
Evolution of H1N1 influenza A outbreaks of the past 100 years is interesting and significantly complex and details of H1N1 genetic drift remains unknown. Here we investigated the clinical characteristics and immune cross-reactivity of significant historical H1N1 strains. We infected ferrets with H1N1 strains from 1943, 1947, 1977, 1986, 1999, and 2009 and showed each produced a unique clinical signature. We found significant cross-reactivity between viruses with similar HA sequences. Interestingly, A/FortMonmouth/1/1947 antisera cross-reacted with A/USSR/90/1977 virus, thought to be a 1947 resurfaced virus. Importantly, our immunological data that didn't show cross-reactivity can be extrapolated to failure of past H1N1 influenza vaccines, ie. 1947, 1986 and 2009. Together, our results help to elucidate H1N1 immuno-genetic alterations that occurred in the past 100 years and immune responses caused by H1N1 evolution. This work will facilitate development of future influenza therapeutics and prophylactics such as influenza vaccines.published_or_final_versio
Dark Force Detection in Low Energy e-p Collisions
We study the prospects for detecting a light boson X with mass m_X < 100 MeV
at a low energy electron-proton collider. We focus on the case where X
dominantly decays to e+ e- as motivated by recent "dark force" models. In order
to evade direct and indirect constraints, X must have small couplings to the
standard model (alpha_X 10 MeV).
By comparing the signal and background cross sections for the e- p e+ e- final
state, we conclude that dark force detection requires an integrated luminosity
of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde
Effective theories of single field inflation when heavy fields matter
We compute the low energy effective field theory (EFT) expansion for
single-field inflationary models that descend from a parent theory containing
multiple other scalar fields. By assuming that all other degrees of freedom in
the parent theory are sufficiently massive relative to the inflaton, it is
possible to derive an EFT valid to arbitrary order in perturbations, provided
certain generalized adiabaticity conditions are respected. These conditions
permit a consistent low energy EFT description even when the inflaton deviates
off its adiabatic minimum along its slowly rolling trajectory. By generalizing
the formalism that identifies the adiabatic mode with the Goldstone boson of
this spontaneously broken time translational symmetry prior to the integration
of the heavy fields, we show that this invariance of the parent theory dictates
the entire non-perturbative structure of the descendent EFT. The couplings of
this theory can be written entirely in terms of the reduced speed of sound of
adiabatic perturbations. The resulting operator expansion is distinguishable
from that of other scenarios, such as standard single inflation or DBI
inflation. In particular, we re-derive how certain operators can become
transiently strongly coupled along the inflaton trajectory, consistent with
slow-roll and the validity of the EFT expansion, imprinting features in the
primordial power spectrum, and we deduce the relevant cubic operators that
imply distinct signatures in the primordial bispectrum which may soon be
constrained by observations.Comment: (v1) 25 pages, 1 figure; (v2) references added and typos corrected,
to appear in Journal of High Energy Physic
What do we know about emotional labour in nursing? A narrative review
Nurses have to manage their emotions and the expression of emotion to perform best care, and their behaviours pass through emotional labour (EL). However, EL seems to be an under-appreciated aspect of caring work and there is no synthetic portrait of literature about EL in the nursing profession. This review was conducted to synthesise and to critically analyse the literature in the nursing field related to EL. Twenty-seven papers were included and analysed with a narrative approach, where two main themes were found: EL strategies and EL antecedents and consequences. Hence, EL is a multidimensional, complex concept and it represents a nursing competence to provide the best care. Moreover, nurses have a high awareness of EL as a professional competence, which is a fundamental element to balance engagement with an appropriate degree of detachment to accomplish tasks for best practice, and to provide high-quality patient care
A search for the decay modes B+/- to h+/- tau l
We present a search for the lepton flavor violating decay modes B+/- to h+/-
tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472
million BBbar pairs. The search uses events where one B meson is fully
reconstructed in one of several hadronic final states. Using the momenta of the
reconstructed B, h, and l candidates, we are able to fully determine the tau
four-momentum. The resulting tau candidate mass is our main discriminant
against combinatorial background. We see no evidence for B+/- to h+/- tau l
decays and set a 90% confidence level upper limit on each branching fraction at
the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
The moment of truth for WIMP Dark Matter
We know that dark matter constitutes 85% of all the matter in the Universe,
but we do not know of what it is made. Amongst the many Dark Matter candidates
proposed, WIMPs (weakly interacting massive particles) occupy a special place,
as they arise naturally from well motivated extensions of the standard model of
particle physics. With the advent of the Large Hadron Collider at CERN, and a
new generation of astroparticle experiments, the moment of truth has come for
WIMPs: either we will discover them in the next five to ten years, or we will
witness the inevitable decline of WIMP paradigm.Comment: To appear in Nature (Nov 18, 2010
Shaping bursting by electrical coupling and noise
Gap-junctional coupling is an important way of communication between neurons
and other excitable cells. Strong electrical coupling synchronizes activity
across cell ensembles. Surprisingly, in the presence of noise synchronous
oscillations generated by an electrically coupled network may differ
qualitatively from the oscillations produced by uncoupled individual cells
forming the network. A prominent example of such behavior is the synchronized
bursting in islets of Langerhans formed by pancreatic \beta-cells, which in
isolation are known to exhibit irregular spiking. At the heart of this
intriguing phenomenon lies denoising, a remarkable ability of electrical
coupling to diminish the effects of noise acting on individual cells.
In this paper, we derive quantitative estimates characterizing denoising in
electrically coupled networks of conductance-based models of square wave
bursting cells. Our analysis reveals the interplay of the intrinsic properties
of the individual cells and network topology and their respective contributions
to this important effect. In particular, we show that networks on graphs with
large algebraic connectivity or small total effective resistance are better
equipped for implementing denoising. As a by-product of the analysis of
denoising, we analytically estimate the rate with which trajectories converge
to the synchronization subspace and the stability of the latter to random
perturbations. These estimates reveal the role of the network topology in
synchronization. The analysis is complemented by numerical simulations of
electrically coupled conductance-based networks. Taken together, these results
explain the mechanisms underlying synchronization and denoising in an important
class of biological models
Evidence for an excess of B -> D(*) Tau Nu decays
Based on the full BaBar data sample, we report improved measurements of the
ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or
mu. These ratios are sensitive to new physics contributions in the form of a
charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) =
0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0
sigma and 2.7 sigma, respectively. Taken together, our results disagree with
these expectations at the 3.4 sigma level. This excess cannot be explained by a
charged Higgs boson in the type II two-Higgs-doublet model. We also report the
observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the
format of Figure 2 and included the effect of the change of the Tau
polarization due to the charged Higg
- …
