627 research outputs found
Clinical handover within the emergency care pathway and the potential risks of clinical handover failure (ECHO) : primary research
Background and objectives:
Handover and communication failures are a recognised threat to patient safety. Handover in emergency care is a particularly vulnerable activity owing to the high-risk context and overcrowded conditions. In addition, handover frequently takes place across the boundaries of organisations that have different goals and motivations, and that exhibit different local cultures and behaviours. This study aimed to explore the risks associated with handover failure in the emergency care pathway, and to identify organisational factors that impact on the quality of handover.
Methods:
Three NHS emergency care pathways were studied. The study used a qualitative design. Risks were explored in nine focus group-based risk analysis sessions using failure mode and effects analysis (FMEA). A total of 270 handovers between ambulance and the emergency department (ED), and the ED and acute medicine were audio-recorded, transcribed and analysed using conversation analysis. Organisational factors were explored through thematic analysis of semistructured interviews with a purposive convenience sample of 39 staff across the three pathways.
Results:
Handover can serve different functions, such as management of capacity and demand, transfer of responsibility and delegation of aspects of care, communication of different types of information, and the prioritisation of patients or highlighting of specific aspects of their care. Many of the identified handover failure modes are linked causally to capacity and patient flow issues. Across the sites, resuscitation handovers lasted between 38 seconds and 4 minutes, handovers for patients with major injuries lasted between 30 seconds and 6 minutes, and referrals to acute medicine lasted between 1 minute and approximately 7 minutes. Only between 1.5% and 5% of handover communication content related to the communication of social issues. Interview participants described a range of tensions inherent in handover that require dynamic trade-offs. These are related to documentation, the verbal communication, the transfer of responsibility and the different goals and motivations that a handover may serve. Participants also described the management of flow of patients and of information across organisational boundaries as one of the most important factors influencing the quality of handover. This includes management of patient flows in and out of departments, the influence of time-related performance targets, and the collaboration between organisations and departments. The two themes are related. The management of patient flow influences the way trade-offs around inner tensions are made, and, on the other hand, one of the goals of handover is ensuring adequate management of patient flows.
Conclusions:
The research findings suggest that handover should be understood as a sociotechnical activity embedded in clinical and organisational practice. Capacity, patient flow and national targets, and the quality of handover are intricately related, and should be addressed together. Improvement efforts should focus on providing practitioners with flexibility to make trade-offs in order to resolve tensions inherent in handover. Collaborative holistic system analysis and greater cultural awareness and collaboration across organisations should be pursued
A Comparison of Methods for Determining the Molecular Content of Model Galaxies
Recent observations indicate that star formation occurs only in the molecular
phase of a galaxy's interstellar medium. A realistic treatment of star
formation in simulations and analytic models of galaxies therefore requires
that one determine where the transition from the atomic to molecular gas
occurs. In this paper we compare two methods for making this determination in
cosmological simulations where the internal structures of molecular clouds are
unresolved: a complex time-dependent chemistry network coupled to a radiative
transfer calculation of the dissociating ultraviolet (UV) radiation field, and
a simple time-independent analytic approximation. We show that these two
methods produce excellent agreement at all metallicities >~10^-2 of the Milky
Way value across a very wide range of UV fields. At lower metallicities the
agreement is worse, likely because time-dependent effects become important;
however, there are no observational calibrations of molecular gas content at
such low metallicities, so it is unclear if either method is accurate. The
comparison suggests that, in many but not all applications, the analytic
approximation provides a viable and nearly cost-free alternative to full
time-dependent chemistry and radiative transfer.Comment: 8 pages, 7 figures, accepted to ApJ, emulateapj format. This version
contains typo corrections and changes to figure presentation, but is
otherwise the same as the previous versio
The potential for circular dichroism as an additional facile and sensitive method of monitoring low-molecular-weight heparins and heparinoids
The ultraviolet circular dichroism (CD) spectra of commercial low-molecular-weight heparins, heparinoids and other anticoagulant preparations have been recorded between 180 and 260 nm. Principal component analysis of the spectra allowed their differentiation into a number of groups related to the means of their production reflecting the structural changes introduced by each process. The findings suggest that CD provides a complementary technique for the rapid analysis of heparin preparations
Emergency Care Handover (ECHO study) across care boundaries : the need for joint decision making and consideration of psychosocial history
Background: Inadequate handover in emergency care is a threat to patient safety. Handover across care boundaries poses particular problems due to different professional, organisational and cultural backgrounds. While there have been many suggestions for standardisation of handover content, relatively little is known about the verbal behaviours that shape handover conversations. This paper explores both what is communicated (content) and how this is communicated (verbal behaviours) during different types of handover conversations across care boundaries in emergency care.
Methods: Three types of interorganisational (ambulance service to emergency department (ED) in ‘resuscitation’ and ‘majors’ areas) and interdepartmental handover conversations (referrals to acute medicine) were audio recorded in three National Health Service EDs. Handover conversations were segmented into utterances. Frequency counts for content and language forms were derived for each type of handover using Discourse Analysis. Verbal behaviours were identified using Conversation Analysis.
Results: 203 handover conversations were analysed. Handover conversations involving ambulance services were predominantly descriptive (60%–65% of utterances), unidirectional and focused on patient presentation (75%–80%). Referrals entailed more collaborative talk focused on the decision to admit and immediate care needs. Across all types of handover, only 1.5%–5% of handover conversation content related to the patient's social and psychological needs.
Conclusions: Handover may entail both descriptive talk aimed at information transfer and collaborative talk aimed at joint decision-making. Standardisation of handover needs to accommodate collaborative aspects and should incorporate communication of information relevant to the patient's social and psychological needs to establish appropriate care arrangements at the earliest opportunity
Test and Analysis Correlation of a Large-Scale, Orthogrid-Stiffened Metallic Cylinder without Weld Lands
The NASA Engineering Safety Center (NESC) Shell Buckling Knockdown Factor Project (SBKF) was established in 2007 by the NESC with the primary objective to develop analysis-based buckling design factors and guidelines for metallic and composite launch-vehicle structures.1 A secondary objective of the project is to advance technologies that have the potential to increase the structural efficiency of launch-vehicles. The SBKF Project has determined that weld-land stiffness discontinuities can significantly reduce the buckling load of a cylinder. In addition, the welding process can introduce localized geometric imperfections that can further exacerbate the inherent buckling imperfection sensitivity of the cylinder. Therefore, single-piece barrel fabrication technologies can improve structural efficiency by eliminating these weld-land issues. As part of this effort, SBKF partnered with the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center (LaRC), the Mechanical and Fabrication Branch at NASA Marshall Space Flight Center (MSFC), and ATI Forged Products to design and fabricate an 8-ft-diameter orthogrid-stiffened seamless metallic cylinder. The cylinder was subjected to seven subcritical load sequences (load levels that are not intended to induce test article buckling or material failure) and one load sequence to failure. The purpose of this test effort was to demonstrate the potential benefits of building cylindrical structures with no weld lands using the flow-formed manufacturing process. This seamless barrel is the ninth 8-ft-diameter metallic barrel and the first single-piece metallic structure to be tested under this program
Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins
PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication
Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test
The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by utilizing unique sensing capabilities of fiber optic sensors
- …
