2,336 research outputs found
An ab-initio study of the electron-phonon coupling within a Cr(001)-surface
It is experimentally well established that the Cr(001)-surface exhibits a
sharp resonance around the Fermi level. However, there is no consensus about
its physical origin. It is proposed to be either due to a single particle dz2
surface state renormalised by electron-phonon coupling or the orbital Kondo
effect involving the degenerate dxz/dyz states. In this work we examine the
electron-phonon coupling of the Cr(001)-surface by means of ab-initio
calculations in the form of density functional perturbation theory. More
precisely, the electron-phonon mass-enhancement factor of the surface layer is
investigated for the 3d states. For the majority and minority spin dz2 surface
states we find values of 0.19 and 0.16. We show that these calculated
electron-phonon mass-enhancement factors are not in agreement with the
experimental data even if we use realistic values for the temperature range and
surface Debye frequency for the fit of the experimental data. More precisely,
then experimentally an electron-phonon mass-enhancement factor of 0.70~0.10 is
obtained, which is not in agreement with our calculated values of 0.19 and
0.16. Therefore, we conclude that the experimentally observed resonance at the
Cr(001)-surface is not due to polaronic effects, but due to electron-electron
correlation effects
Adsorption of diatomic halogen molecules on graphene: A van der Waals density functional study
The adsorption of fluorine, chlorine, bromine, and iodine diatomic molecules
on graphene has been investigated using density functional theory with taking
into account nonlocal correlation effects by means of vdW-DF approach. It is
shown that the van der Waals interaction plays a crucial role in the formation
of chemical bonding between graphene and halogen molecules, and is therefore
important for a proper description of adsorption in this system. In-plane
orientation of the molecules has been found to be more stable than the
orientation perpendicular to the graphene layer. In the cases of F, Br
and I we also found an ionic contribution to the binding energy, slowly
vanishing with distance. Analysis of the electronic structure shows that ionic
interaction arises due to the charge transfer from graphene to the molecules.
Furthermore, we found that the increase of impurity concentration leads to the
conduction band formation in graphene due to interaction between halogen
molecules. In addition, graphite intercalation by halogen molecules has been
investigated. In the presence of halogen molecules the binding between graphite
layers becomes significantly weaker, which is in accordance with the results of
recent experiments on sonochemical exfoliation of intercalated graphite.Comment: Submitted to PR
Graphene adhesion on mica: Role of surface morphology
We investigate theoretically the adhesion and electronic properties of
graphene on a muscovite mica surface using the density functional theory (DFT)
with van der Waals (vdW) interactions taken into account (the vdW-DF approach).
We found that irregularities in the local structure of cleaved mica surface
provide different mechanisms for the mica-graphene binding. By assuming
electroneutrality for both surfaces, the binding is mainly of vdW nature,
barely exceeding thermal energy per carbon atom at room temperature. In
contrast, if potassium atoms are non uniformly distributed on mica, the
different regions of the surface give rise to - or -type doping of
graphene. In turn, an additional interaction arises between the surfaces,
significantly increasing the adhesion. For each case the electronic states of
graphene remain unaltered by the adhesion. It is expected, however, that the
Fermi level of graphene supported on realistic mica could be shifted relative
to the Dirac point due to asymmetry in the charge doping. Obtained variations
of the distance between graphene and mica for different regions of the surface
are found to be consistent with recent atomic force microscopy experiments. A
relative flatness of mica and the absence of interlayer covalent bonding in the
mica-graphene system make this pair a promising candidate for practical use.Comment: 6 pages, 3 figure
- …
