2,108 research outputs found
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Deep neural networks are widely used for classification. These deep models
often suffer from a lack of interpretability -- they are particularly difficult
to understand because of their non-linear nature. As a result, neural networks
are often treated as "black box" models, and in the past, have been trained
purely to optimize the accuracy of predictions. In this work, we create a novel
network architecture for deep learning that naturally explains its own
reasoning for each prediction. This architecture contains an autoencoder and a
special prototype layer, where each unit of that layer stores a weight vector
that resembles an encoded training input. The encoder of the autoencoder allows
us to do comparisons within the latent space, while the decoder allows us to
visualize the learned prototypes. The training objective has four terms: an
accuracy term, a term that encourages every prototype to be similar to at least
one encoded input, a term that encourages every encoded input to be close to at
least one prototype, and a term that encourages faithful reconstruction by the
autoencoder. The distances computed in the prototype layer are used as part of
the classification process. Since the prototypes are learned during training,
the learned network naturally comes with explanations for each prediction, and
the explanations are loyal to what the network actually computes.Comment: The first two authors contributed equally, 8 pages, accepted in AAAI
201
Perron-based algorithms for the multilinear pagerank
We consider the multilinear pagerank problem studied in [Gleich, Lim and Yu,
Multilinear Pagerank, 2015], which is a system of quadratic equations with
stochasticity and nonnegativity constraints. We use the theory of quadratic
vector equations to prove several properties of its solutions and suggest new
numerical algorithms. In particular, we prove the existence of a certain
minimal solution, which does not always coincide with the stochastic one that
is required by the problem. We use an interpretation of the solution as a
Perron eigenvector to devise new fixed-point algorithms for its computation,
and pair them with a homotopy continuation strategy. The resulting numerical
method is more reliable than the existing alternatives, being able to solve a
larger number of problems
Generalized Induced Norms
Let ||.|| be a norm on the algebra M_n of all n-by-n matrices over the
complex field C. An interesting problem in matrix theory is that "are there two
norms ||.||_1 and ||.||_2 on C^n such that ||A||=max{||Ax||_2: ||x||_1=1} for
all A in M_n. We will investigate this problem and its various aspects and will
discuss under which conditions ||.||_1=||.||_2.Comment: 8 page
GSplit LBI: Taming the Procedural Bias in Neuroimaging for Disease Prediction
In voxel-based neuroimage analysis, lesion features have been the main focus
in disease prediction due to their interpretability with respect to the related
diseases. However, we observe that there exists another type of features
introduced during the preprocessing steps and we call them "\textbf{Procedural
Bias}". Besides, such bias can be leveraged to improve classification accuracy.
Nevertheless, most existing models suffer from either under-fit without
considering procedural bias or poor interpretability without differentiating
such bias from lesion ones. In this paper, a novel dual-task algorithm namely
\emph{GSplit LBI} is proposed to resolve this problem. By introducing an
augmented variable enforced to be structural sparsity with a variable splitting
term, the estimators for prediction and selecting lesion features can be
optimized separately and mutually monitored by each other following an
iterative scheme. Empirical experiments have been evaluated on the Alzheimer's
Disease Neuroimaging Initiative\thinspace(ADNI) database. The advantage of
proposed model is verified by improved stability of selected lesion features
and better classification results.Comment: Conditional Accepted by Miccai,201
Data Quality Assurance and Performance Measurement of Data Mining for Preventive Maintenance of Power Grid
Ensuring reliability as the electrical grid morphs into the "smart grid" will require innovations in how we assess the state of the grid, for the purpose of proactive maintenance, rather than reactive maintenance; in the future, we will not only react to failures, but also try to anticipate and avoid them using predictive modeling (machine learning and data mining) techniques. To help in meeting this challenge, we present the Neutral Online Visualization-aided Autonomic evaluation framework (NOVA) for evaluating machine learning and data mining algorithms for preventive maintenance on the electrical grid. NOVA has three stages provided through a unified user interface: evaluation of input data quality, evaluation of machine learning and data mining results, and evaluation of the reliability improvement of the power grid. A prototype version of NOVA has been deployed for the power grid in New York City, and it is able to evaluate machine learning and data mining systems effectively and efficiently
Functional Multi-Layer Perceptron: a Nonlinear Tool for Functional Data Analysis
In this paper, we study a natural extension of Multi-Layer Perceptrons (MLP)
to functional inputs. We show that fundamental results for classical MLP can be
extended to functional MLP. We obtain universal approximation results that show
the expressive power of functional MLP is comparable to that of numerical MLP.
We obtain consistency results which imply that the estimation of optimal
parameters for functional MLP is statistically well defined. We finally show on
simulated and real world data that the proposed model performs in a very
satisfactory way.Comment: http://www.sciencedirect.com/science/journal/0893608
Recommended from our members
Estimation of System Reliability Using a Semiparametric Model
An important problem in reliability engineering is to predict the failure rate, that is, the frequency with which an engineered system or component fails. This paper presents a new method of estimating failure rate using a semiparametric model with Gaussian process smoothing. The method is able to provide accurate estimation based on historical data and it does not make strong a priori assumptions of failure rate pattern (e.g., constant or monotonic). Our experiments of applying this method in power system failure data compared with other models show its efficacy and accuracy. This method can be used in estimating reliability for many other systems, such as software systems or components
A Compact Linear Programming Relaxation for Binary Sub-modular MRF
We propose a novel compact linear programming (LP) relaxation for binary
sub-modular MRF in the context of object segmentation. Our model is obtained by
linearizing an -norm derived from the quadratic programming (QP) form of
the MRF energy. The resultant LP model contains significantly fewer variables
and constraints compared to the conventional LP relaxation of the MRF energy.
In addition, unlike QP which can produce ambiguous labels, our model can be
viewed as a quasi-total-variation minimization problem, and it can therefore
preserve the discontinuities in the labels. We further establish a relaxation
bound between our LP model and the conventional LP model. In the experiments,
we demonstrate our method for the task of interactive object segmentation. Our
LP model outperforms QP when converting the continuous labels to binary labels
using different threshold values on the entire Oxford interactive segmentation
dataset. The computational complexity of our LP is of the same order as that of
the QP, and it is significantly lower than the conventional LP relaxation
Some extremal functions in Fourier analysis, III
We obtain the best approximation in , by entire functions of
exponential type, for a class of even functions that includes
, where , and , where . We also give periodic versions of these results where the
approximating functions are trigonometric polynomials of bounded degree.Comment: 26 pages. Submitte
- …
