7,357 research outputs found
Study of Some Cosmological Parameters for Interacting New Holographic Dark Energy Model in f(T) Gravity
The present work is based on the idea of an interacting framework of new
holographic dark energy with cold dark matter in the background of
gravity. Here, we have considered the flat modified Friedmann universe for
gravity which is filled with new Holographic dark energy and dark
matter. We have derived some cosmological parameters like Deceleration
parameter, EoS parameter, State-finder parameters, Cosmographic parameters,
{\it Om} parameter and graphically investigated the nature of these parameters
for the above mentioned interacting scenario. The results are found to be
consistent with the accelerating universe. Also we have graphically
investigated the trajectories in -- plane for different
values of the interacting parameter and explored the freezing region and
thawing region in -- plane. Finally, we have analyzed the
stability of this model.Comment: 12 pages, 12 figures, Accepted in International Journal of Modern
Physics
Emergent Universe With Exotic Matter In Loop Quantum Cosmology, DGP Brane World and Kaluza-Klein Cosmology
In this work we have investigated the emergent scenario of the universe
described by Loop quantum cosmology model, DGP brane model and Kaluza-Klein
cosmology. Scalar field along with barotropic fluid as normal matter is
considered as the matter content of the universe. In Loop quantum cosmology it
is found that the emergent scenario is realized with the imposition of some
conditions on the value of the density of normal matter in case of normal and
phantom scalar field. This is a surprising result indeed considering the fact
that scalar field is the dominating matter component. In case of Tachyonic
field, emergent scenario is realized with some constraints on the value of
for both normal and phantom tachyon. In case of DGP brane-world
realization of an emergent scenario is possible almost unconditionally for
normal and phantom fields. Plots and table have been generated to testify this
fact. In case of tachyonic field emergent scenario is realized with some
constraints on . In Kaluza-Klein cosmology emergent scenario is
possible only for a closed universe in case of normal and phantom scalar field.
For a tachyonic field realization of emergent universe is possible for all
models(closed, open and flat).Comment: 13 pages, 16 figures, 1 table. arXiv admin note: text overlap with
arXiv:1105.109
Shielding effects in random large area field emitters, the field enhancement factor distribution and current calculation
A finite-size uniform random distribution of vertically aligned field
emitters on a planar surface is studied under the assumption that the
asymptotic field is uniform and parallel to the emitter axis. A formula for
field enhancement factor is first derived for a 2-emitter system and this is
then generalized for -emitters placed arbitrarily (line, array or random).
It is found that geometric effects dominate the shielding of field lines. The
distribution of field enhancement factor for a uniform random distribution of
emitter locations is found to be closely approximated by an extreme value
(Gumbel-minimum) distribution when the mean separation is greater than the
emitter height but is better approximated by a Gaussian for mean separations
close to the emitter height. It is shown that these distributions can be used
to accurately predict the current emitted from a large area field emitter.Comment: 10 page
It'll probably work out: improved list-decoding through random operations
In this work, we introduce a framework to study the effect of random
operations on the combinatorial list-decodability of a code. The operations we
consider correspond to row and column operations on the matrix obtained from
the code by stacking the codewords together as columns. This captures many
natural transformations on codes, such as puncturing, folding, and taking
subcodes; we show that many such operations can improve the list-decoding
properties of a code. There are two main points to this. First, our goal is to
advance our (combinatorial) understanding of list-decodability, by
understanding what structure (or lack thereof) is necessary to obtain it.
Second, we use our more general results to obtain a few interesting corollaries
for list decoding:
(1) We show the existence of binary codes that are combinatorially
list-decodable from fraction of errors with optimal rate
that can be encoded in linear time.
(2) We show that any code with relative distance, when randomly
folded, is combinatorially list-decodable fraction of errors with
high probability. This formalizes the intuition for why the folding operation
has been successful in obtaining codes with optimal list decoding parameters;
previously, all arguments used algebraic methods and worked only with specific
codes.
(3) We show that any code which is list-decodable with suboptimal list sizes
has many subcodes which have near-optimal list sizes, while retaining the error
correcting capabilities of the original code. This generalizes recent results
where subspace evasive sets have been used to reduce list sizes of codes that
achieve list decoding capacity
- …
