262 research outputs found
Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells.
FUT1 and FUT2 encode alpha 1, 2-fucosyltransferases which catalyze the addition of alpha 1, 2-linked fucose to glycans. Glycan products of FUT1 and FUT2, such as Globo H and Lewis Y, are highly expressed on malignant tissues, including breast cancer. Herein, we investigated the roles of FUT1 and FUT2 in breast cancer. Silencing of FUT1 or FUT2 by shRNAs inhibited cell proliferation in vitro and tumorigenicity in mice. This was associated with diminished properties of cancer stem cell (CSC), including mammosphere formation and CSC marker both in vitro and in xenografts. Silencing of FUT2, but not FUT1, significantly changed the cuboidal morphology to dense clusters of small and round cells with reduced adhesion to polystyrene and extracellular matrix, including laminin, fibronectin and collagen. Silencing of FUT1 or FUT2 suppressed cell migration in wound healing assay, whereas FUT1 and FUT2 overexpression increased cell migration and invasion in vitro and metastasis of breast cancer in vivo. A decrease in mesenchymal like markers such as fibronectin, vimentin, and twist, along with increased epithelial like marker, E-cadherin, was observed upon FUT1/2 knockdown, while the opposite was noted by overexpression of FUT1 or FUT2. As expected, FUT1 or FUT2 knockdown reduced Globo H, whereas FUT1 or FUT2 overexpression showed contrary effects. Exogenous addition of Globo H-ceramide reversed the suppression of cell migration by FUT1 knockdown but not the inhibition of cell adhesion by FUT2 silencing, suggesting that at least part of the effects of FUT1/2 knockdown were mediated by Globo H. Our results imply that FUT1 and FUT2 play important roles in regulating growth, adhesion, migration and CSC properties of breast cancer, and may serve as therapeutic targets for breast cancer
Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells.
IntroductionAlthough breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors.MethodsParaffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation.ResultsImmunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction of ALDH+/GD2+ cells to differentiate into neural cells of various lineages, along with the observation of neural differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH+ or ALDH+/GD2+ cells could also be induced to differentiate into adipocytes, osteocytes or chondrocytes.ConclusionsOur findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and their CSCs were enriched in ALDH+ and ALDH+/GD2+ subpopulations
Recommended from our members
FAM129B, an antioxidative protein, reduces chemosensitivity by competing with Nrf2 for Keap1 binding.
BackgroundThe transcription factor Nrf2 is a master regulator of antioxidant response. While Nrf2 activation may counter increasing oxidative stress in aging, its activation in cancer can promote cancer progression and metastasis, and confer resistance to chemotherapy and radiotherapy. Thus, Nrf2 has been considered as a key pharmacological target. Unfortunately, there are no specific Nrf2 inhibitors for therapeutic application. Moreover, high Nrf2 activity in many tumors without Keap1 or Nrf2 mutations suggests that alternative mechanisms of Nrf2 regulation exist.MethodsInteraction of FAM129B with Keap1 is demonstrated by immunofluorescence, colocalization, co-immunoprecipitation and mammalian two-hybrid assay. Antioxidative function of FAM129B is analyzed by measuring ROS levels with DCF/flow cytometry, Nrf2 activation using luciferase reporter assay and determination of downstream gene expression by qPCR and wester blotting. Impact of FAM129B on in vivo chemosensitivity is examined in mice bearing breast and colon cancer xenografts. The clinical relevance of FAM129B is assessed by qPCR in breast cancer samples and data mining of publicly available databases.FindingsWe have demonstrated that FAM129B in cancer promotes Nrf2 activity by reducing its ubiquitination through competition with Nrf2 for Keap1 binding via its DLG and ETGE motifs. In addition, FAM129B reduces chemosensitivity by augmenting Nrf2 antioxidative signaling and confers poor prognosis in breast and lung cancer.InterpretationThese findings demonstrate the important role of FAM129B in Nrf2 activation and antioxidative response, and identify FMA129B as a potential therapeutic target. FUND: The Chang Gung Medical Foundation (Taiwan) and the Ministry of Science and Technology (Taiwan)
GPER-induced signaling is essential for the survival of breast cancer stem cells.
G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs
Sialylation of vasorin by ST3Gal1 facilitates TGF-β1-mediated tumor angiogenesis and progression.
ST3Gal1 is a key sialyltransferase which adds α2,3-linked sialic acid to substrates and generates core 1 O-glycan structure. Upregulation of ST3Gal1 has been associated with worse prognosis of breast cancer patients. However, the protein substrates of ST3Gal1 implicated in tumor progression remain elusive. In our study, we demonstrated that ST3GAL1-silencing significantly reduced tumor growth along with a notable decrease in vascularity of MCF7 xenograft tumors. We identified vasorin (VASN) which was shown to bind TGF-β1, as a potential candidate that links ST3Gal1 to angiogenesis. LC-MS/MS analysis of VASN secreted from MCF7, revealed that more than 80% of its O-glycans are sialyl-3T and disialyl-T. ST3GAL1-silencing or desialylation of VASN by neuraminidase enhanced its binding to TGF-β1 by 2- to 3-fold and thereby dampening TGF-β1 signaling and angiogenesis, as indicated by impaired tube formation of HUVECs, suppressed angiogenesis gene expression and reduced activation of Smad2 and Smad3 in HUVEC cells. Examination of 114 fresh primary breast cancer and their adjacent normal tissues showed that the expression levels of ST3Gal1 and TGFB1 were high in tumor part and the expression of two genes was positively correlated. Kaplan Meier survival analysis showed a significantly shorter relapse-free survival for those with lower expression VASN, notably, the combination of low VASN with high ST3GAL1 yielded even higher risk of recurrence (p = 0.025, HR = 2.967, 95% CI = 1.14-7.67). Since TGF-β1 is known to transcriptionally activate ST3Gal1, our findings illustrated a feedback regulatory loop in which TGF-β1 upregulates ST3Gal1 to circumvent the negative impact of VASN
High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma.
Cancer may arise from dedifferentiation of mature cells or maturation-arrested stem cells. Previously we reported that definitive endoderm from which liver was derived, expressed Globo H, SSEA-3 and SSEA-4. In this study, we examined the expression of their biosynthetic enzymes, FUT1, FUT2, B3GALT5 and ST3GAL2, in 135 hepatocellular carcinoma (HCC) tissues by qRT-PCR. High expression of either FUT1 or B3GALT5 was significantly associated with advanced stages and poor outcome. Kaplan Meier survival analysis showed significantly shorter relapse-free survival (RFS) for those with high expression of either FUT1 or B3GALT5 (P = 0.024 and 0.001, respectively) and shorter overall survival (OS) for those with high expression of B3GALT5 (P = 0.017). Combination of FUT1 and B3GALT5 revealed that high expression of both genes had poorer RFS and OS than the others (P < 0.001). Moreover, multivariable Cox regression analysis identified the combination of B3GALT5 and FUT1 as an independent predictor for RFS (HR: 2.370, 95% CI: 1.505-3.731, P < 0.001) and OS (HR: 2.153, 95% CI: 1.188-3.902, P = 0.012) in HCC. In addition, the presence of Globo H, SSEA-3 and SSEA-4 in some HCC tissues and their absence in normal liver was established by immunohistochemistry staining and mass spectrometric analysis
The Importance of Mindfulness in the Achievement of Optimal Functioning: Conceptualization for Research Development
The concept of ‘optimal functioning’ has emerged as a major line of research development in educational psychology. Optimal functioning, which reflects the paradigm of positive psychology, is concerned with a person’s achievement of maximization in his/her functioning, whether it is mental, cognitive, emotional, or social. This inquiry places strong emphasis on importance of flourishing, happiness, and the proactivity of human endeavors. An important question then for consideration, from this testament, is how researchers optimize the achievement of optimal functioning. We have recently made progress by focusing on empirical research development and methodological conceptualizations into the study of optimization. Our conceptualizations, collectively, contend that there are psychological, educational, and psychosocial variables that operate as sources of ‘energization’, which then stimulate the buoyancy of motivation, personal resolve, effective functioning, strength, and effort expenditure. Energization, in its totality, from our postulation, may then arouse, intensify, and sustain a person’s internal state of functioning. Our cross-institutional, cross-cultural research collaboration (e.g., Australia, Malaysia, and Taiwan), to date, has considered one notably construct that could serve as a source of internal energization for the achievement of functioning: mindfulness. We strongly believe that the totality of mindfulness, positive in nature, could play a central role in the psychological processes of human agency
Stage-Specific Expression of TNFα Regulates Bad/Bid-Mediated Apoptosis and RIP1/ROS-Mediated Secondary Necrosis in Birnavirus-Infected Fish Cells
Infectious pancreatic necrosis virus (IPNV) can induce Bad-mediated apoptosis followed by secondary necrosis in fish cells, but it is not known how these two types of cell death are regulated by IPNV. We found that IPNV infection can regulate Bad/Bid-mediated apoptotic and Rip1/ROS-mediated necrotic death pathways via the up-regulation of TNFα in zebrafish ZF4 cells. Using a DNA microarray and quantitative RT-PCR analyses, two major subsets of differentially expressed genes were characterized, including the innate immune response gene TNFα and the pro-apoptotic genes Bad and Bid. In the early replication stage (0–6 h post-infection, or p.i.), we observed that the pro-inflammatory cytokine TNFα underwent a rapid six-fold induction. Then, during the early-middle replication stages (6–12 h p.i.), TNFα level was eight-fold induction and the pro-apoptotic Bcl-2 family members Bad and Bid were up-regulated. Furthermore, specific inhibitors of TNFα expression (AG-126 or TNFα-specific siRNA) were used to block apoptotic and necrotic death signaling during the early or early-middle stages of IPNV infection. Inhibition of TNFα expression dramatically reduced the Bad/Bid-mediated apoptotic and Rip1/ROS-mediated necrotic cell death pathways and rescued host cell viability. Moreover, we used Rip1-specific inhibitors (Nec-1 and Rip1-specific siRNA) to block Rip1 expression. The Rip1/ROS-mediated secondary necrotic pathway appeared to be reduced in IPNV-infected fish cells during the middle-late stage of infection (12–18 h p.i.). Taken together, our results indicate that IPNV triggers two death pathways via up-stream induction of the pro-inflammatory cytokine TNFα, and these results may provide new insights into the pathogenesis of RNA viruses
Recommended from our members
The interplay between IGF-1R signaling and Hippo-YAP in breast cancer stem cells
Both IGF-1R/PI3K/AKT/mTOR and Hippo pathways are crucial for breast cancer stem cells (BCSCs). However, their interplay remains unclear. Four triple negative breast cancer cell lines derived from CSC of two patient-derived xenografts (PDXs), AS-B145, AS-B145-1R, AS-B244, and AS-B244-1R, were used to elucidate the role of YAP in BCSCs. YAP silenced BCSCs were analyzed by cell proliferation, aldehyde dehydrogenase (ALDH) activity, mammosphere formation, and tumorigenesis. The effects of modulating IGF-1R and IGF-1 on YAP expression and localization were evaluated. The clinical correlation of YAP and IGF-1R signaling with the overall survival (OS) of 7830 breast cancer patients was analyzed by KM plotter. Knockdown of YAP abates the viability and stemness of BCSCs in vitro and tumorigenicity in vivo. Depletion of IGF-1R by shRNA or specific inhibitor decreases YAP expression. In contrast, IGF-1 addition upregulates YAP and enhances its nuclear localization. YAP overexpression increased the mRNA level of IGF-1, but not IGF-1R. Data mining of clinical breast cancer specimens revealed that basal-like breast cancer patients with higher level of IGF-1 and YAP exhibit significantly shorter OS. YAP contributes to stemness features of breast cancer in vitro and in vivo. The expression and localization of YAP was regulated by IGF-1R and YAP expression in turns upregulates IGF-1, but not IGF-1R. Clinically, higher level of YAP and IGF-1 significantly correlated with shorter OS in basal-like breast cancer. Taken together, these findings suggest the clinical relevance of interplay between YAP and IGF-1/IGF-1R pathway in sustaining the properties of BCSCs. Video Abstract
The expression and significance of insulin-like growth factor-1 receptor and its pathway on breast cancer stem/progenitors
INTRODUCTION: Dysregulation of the insulin-like growth factor-1 receptor (IGF-1R)/phosphatidylinositol-3-kinase (PI3K)/Akt pathway was shown to correlate with breast cancer disease progression. Cancer stem cells are a subpopulation within cancer cells that participate in tumor initiation, radio/chemoresistance and metastasis. In breast cancer, breast cancer stem cells (BCSCs) were identified as CD24(-)CD44(+ )cells or cells with high intracellular aldehyde dehydrogenase activity (ALDH(+)). Elucidation of the role of IGF-1R in BCSCs is crucial to the design of breast cancer therapies targeting BCSCs. METHODS: IGF-1R expression in BCSCs and noncancer stem cells sorted from xenografts of human primary breast cancers was examined by fluorescence-activated cell sorting (FACS), western blot analysis and immunoprecipitation. The role of IGF-1R in BCSCs was assessed by IGF-1R blockade with chemical inhibitor and gene silencing. Involvement of PI3K/Akt/mammalian target of rapamycin (mTOR) as the downstream pathway was studied by their phosphorylation status upon IGF-1R inhibition and the effects of chemical inhibitors of these signaling molecules on BCSCs. We also studied 16 clinical specimens of breast cancer for the expression of phosphor-Akt in the BCSCs by FACS. RESULTS: Expression of phosphorylated IGF-1R was greater in BCSCs than in non-BCSCs from xenografts of human breast cancer, which were supported by western blot and immunoprecipitation experiments. The sorted IGF-1R-expressing cells displayed features of cancer stem/progenitors such as mammosphere formation in vitro and tumorigenicity in vivo, both of which were suppressed by knockdown of IGF-1R. A specific inhibitor of the IGF-1R, picropodophyllin suppressed phospho-Akt(Ser473 )and preferentially decreased ALDH(+ )BCSC populations of human breast cancer cells. Furthermore, picropodophyllin inhibited the capacity of CD24(-)CD44(+ )BCSCs to undergo the epithelial-mesenchymal transition process with downregulation of mesenchymal markers. Inhibitors of signal molecules downstream of IGF-1R including PI3K/Akt/mTOR also reduced the ALDH(+ )population of breast cancer cells. Furthermore, the mTOR inhibitor, rapamycin, suppressed BCSCs in vitro and in vivo. CONCLUSION: Our data support the notion that IGF-1R is a marker of stemness, and IGF-1R and its downstream PI3K/Akt/mTOR pathway are attractive targets for therapy directed against breast cancer stem/progenitors
- …
