93 research outputs found
Revised Model for Antibiotic Resistance in a Hospital
In this thesis we modify an existing model for the spread of resistant bacteria in a hospital. The existing model does not account for some of the trends seen in the data found in literature. The new model takes some of these trends into account. For the new model, we examine issues relating to identifiability, sensitivity analysis, parameter estimation, uncertainty analysis, and equilibrium stability
Performance optimization and lightweight design of floating raft vibration isolation system based on RBF-PSO algorithm
ObjectiveTo address the challenges of heavy workload and long iterative cycles in the lightweight design of floating raft vibration isolation system in engineering applications, this study proposes a lightweight design method based on RBF-PSO multi-objective optimization algorithm. Method Taking the plate-frame floating raft vibration isolation system as the research object, a finite element model was established using ANSYS APDL. The vibration isolation performance and impact resistance were evaluated through numerical simulation. Experimental tests were conducted to assess the vibration isolation performance of the floating raft. The accuracy of the numerical simulation was validated by comparing it with the experimental results. A full finite difference method was employed to analyze the parameter sensitivity of the floating raft vibration isolation system. Appropriate design variables were selected based on the sensitivity analysis. The lightweight design of the floating raft vibration isolation system was carried out using the RBF-PSO multi-objective optimization algorithm. Results The results show that after optimization, the mass of the raft is 63.03 kg. Compared with the original design, the weight of the lightweight raft is reduced by 31.92%. The vibration isolation performance of the floating raft system improves by 2.48 dB. The impact resistance of the equipment is also improved. The discrepancy between the optimized result obtained by the RBF-PSO algorithm and the numerical simulation calculation is less than 1%. Conclusion Therefore, the RBF-PSO multi-objective optimization algorithm can be effectively applied to the lightweight design of the floating raft vibration isolation system
Gene therapy for fat-1 prevents obesity-induced metabolic dysfunction, cellular senescence, and osteoarthritis
Obesity is one of the primary risk factors for osteoarthritis (OA), acting through cross talk among altered biomechanics, metabolism, adipokines, and dietary free fatty acid (FA) composition. Obesity and aging have been linked to cellular senescence in various tissues, resulting in increased local and systemic inflammation and immune dysfunction. We hypothesized that obesity and joint injury lead to cellular senescence that is typically associated with increased OA severity or with aging and that the ratio of omega-6 (ω-6) to omega-3 (ω-3) FAs regulates these pathologic effects. Mice were placed on an ω-6-rich high-fat diet or a lean control diet and underwent destabilization of the medial meniscus to induce OA. Obesity and joint injury significantly increased cellular senescence in subcutaneous and visceral fat as well as joint tissues such as synovium and cartilage. Using adeno-associated virus (AAV) gene therapy fo
Gene therapy for follistatin mitigates systemic metabolic inflammation and post-traumatic arthritis in high-fat diet-induced obesity
Obesity-associated inflammation and loss of muscle function play critical roles in the development of osteoarthritis (OA); thus, therapies that target muscle tissue may provide novel approaches to restoring metabolic and biomechanical dysfunction associated with obesity. Follistatin (FST), a protein that binds myostatin and activin, may have the potential to enhance muscle formation while inhibiting inflammation. Here, we hypothesized that adeno-associated virus 9 (AAV9) delivery of FST enhances muscle formation and mitigates metabolic inflammation and knee OA caused by a high-fat diet in mice. AAV-mediated FST delivery exhibited decreased obesity-induced inflammatory adipokines and cytokines systemically and in the joint synovial fluid. Regardless of diet, mice receiving FST gene therapy were protected from post-traumatic OA and bone remodeling induced by joint injury. Together, these findings suggest that FST gene therapy may provide a multifactorial therapeutic approach for injury-induced OA and metabolic inflammation in obesity
Follistatin N terminus differentially regulates muscle size and fat in vivo
Delivery of follistatin (FST) represents a promising strategy for both muscular dystrophies and diabetes, as FST is a robust antagonist of myostatin and activin, which are critical regulators of skeletal muscle and adipose tissues. FST is a multi-domain protein, and deciphering the function of different domains will facilitate novel designs for FST-based therapy. Our study aims to investigate the role of the N-terminal domain (ND) of FST in regulating muscle and fat mass in vivo. Different FST constructs were created and packaged into the adeno-associated viral vector (AAV). Overexpression of wild-type FST in normal mice greatly increased muscle mass while decreasing fat accumulation, whereas overexpression of an N terminus mutant or N terminus-deleted FST had no effect on muscle mass but moderately decreased fat mass. In contrast, FST-I-I containing the complete N terminus and double domain I without domain II and III had no effect on fat but increased skeletal muscle mass. The effects of different constructs on differentiated C2C12 myotubes were consistent with the in vivo finding. We hypothesized that ND was critical for myostatin blockade, mediating the increase in muscle mass, and was less pivotal for activin binding, which accounts for the decrease in the fat tissue. An in vitro TGF-beta1-responsive reporter assay revealed that FST-I-I and N terminus-mutated or -deleted FST showed differential responses to blockade of activin and myostatin. Our study provided direct in vivo evidence for a role of the ND of FST, shedding light on future potential molecular designs for FST-based gene therapy
Single Tyrosine Mutation in AAV8 and AAV9 Capsids Is Insufficient to Enhance Gene Delivery to Skeletal Muscle and Heart
Site-directed mutations of tyrosine (Y) to phenylalanine (F) on the surface of adeno-associated viral (AAV) capsids have been reported as a simple method to greatly enhance gene transfer in vitro and in vivo. To determine whether the Y-to-F mutation could also enhance AAV8 and AAV9 gene transfer in skeletal muscle and heart to facilitate muscular dystrophy gene therapy, we investigated four capsid mutants of AAV8 (Y447F or Y733F) and AAV9 (Y446F or Y731F). The mutants and their wild-type control AAV8 and AAV9 capsids were used to package reporter genes (luciferase or β-galactosidase) resulting in similar vector yields. To evaluate gene delivery efficiencies, especially in muscle and heart, the vectors were compared side by side in a series of experiments in vivo in two different strains of mice, the outbred ICR and the inbred C57BL/6. Because AAV8 and AAV9 are among the most effective in systemic gene delivery, we first examined the mutant and wild-type vectors in neonatal mice by intraperitoneal injection, or in adult mice by intravenous injection. To our surprise, no statistically significant differences in transgene expression were observed between the mutant and wild-type vectors, regardless of the reporter genes, vector doses, and the ages and strains of mice used. In addition, quantitative analyses of vector DNA copy number in various tissues from mice treated with mutant and wild-type vectors also showed similar results. Finally, direct intramuscular injection of the above-described vectors with the luciferase gene into the hind limb muscles revealed the same levels of gene expression between mutant and wild-type vectors. Our results thus demonstrate that a single mutation of Y447F or Y733F on capsids of AAV8, and of Y446F or Y731F on AAV9, is insufficient to enhance gene delivery to the skeletal muscle and heart
How to improve communication with deaf children in the dental clinic
It may be difficult for hearing-impaired people to communicate with people who hear. In the health care area, there is often little awareness of the communication barriers faced by the deaf and, in dentistry, the attitude adopted towards the deaf is not always correct. A review is given of the basic rules and advice given for communicating with the hearing-impaired. The latter are classified in three groups ? lip-readers, sign language users and those with hearing aids. The advice given varies for the different groups although the different methods of communication are often combined (e.g. sign language plus lip-reading, hearing-aids plus lip-reading). Treatment of hearing-impaired children in the dental clinic must be personalised. Each child is different, depending on the education received, the communication skills possessed, family factors (degree of parental protection, etc.), the existence of associated problems (learning difficulties), degree of loss of hearing, age, etc
Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes
Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human-induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T89I mutations to elucidate the differential effects on channel function and chondrogenic differentiation. We found that hiPSC-derived chondrocytes with the V620I mutation exhibited increased basal currents through TRPV4. However, both mutations showed more rapid calcium signaling with a reduced overall magnitude in response to TRPV4 agonist GSK1016790A compared to wildtype (WT). There were no differences in overall cartilaginous matrix production, but the V620I mutation resulted in reduced mechanical properties of cartilage matrix later in chondrogenesis. mRNA sequencing revealed that both mutations up-regulated several anterio
Membrane stretch as the mechanism of activation of PIEZO1 ion channels in chondrocytes
Osteoarthritis is a chronic disease that can be initiated by altered joint loading or injury of the cartilage. The mechanically sensitive PIEZO ion channels have been shown to transduce injurious levels of biomechanical strain in articular chondrocytes and mediate cell death. However, the mechanisms of channel gating in response to high cellular deformation and the strain thresholds for activating PIEZO channels remain unclear. We coupled studies of single-cell compression using atomic force microscopy (AFM) with finite element modeling (FEM) to identify the biophysical mechanisms of PIEZO-mediated calcium (C
Acetylation of Myocardin Is Required for the Activation of Cardiac and Smooth Muscle Genes
Myocardin belongs to the SAF-A/B, Acinus, PIAS (SAP) domain family of transcription factors and is specifically expressed in cardiac and smooth muscle. Myocardin functions as a transcriptional coactivator of SRF and is sufficient and necessary for smooth muscle gene expression. We have previously found that myocardin induces the acetylation of nucleosomal histones surrounding SRF-binding sites in the control regions of cardiac and smooth muscle genes through recruiting chromatin-modifying enzyme p300, yet no studies have determined whether myocardin itself is similarly modified. In this study, we show that myocardin is a direct target for p300-mediated acetylation. p300 acetylates lysine residues at the N terminus of the myocardin protein. Interestingly, a direct interaction between p300 and myocardin, which is mediated by the C terminus of myocardin, is required for the acetylation event. Acetylation of myocardin by p300 enhances the association of myocardin and SRF as well as the formation of the myocardin-SRF-CArG box ternary complex. Conversely, acetylation of myocardin decreases the binding of histone deacetylase 5 (HDAC5) to myocardin. Acetylation of myocardin is required for myocardin to activate smooth muscle genes. Our study demonstrates that acetylation plays a key role in modulating myocardin function in controlling cardiac and smooth muscle gene expression
- …
