130 research outputs found

    Biomedical applications of human cathelicidin

    Get PDF
    [Excerpt] Antimicrobial peptides (AMPs) are good candidates to treat burn wounds, a major cause of morbidity, impaired life quality and resources consumption in developed countries. Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, represents the second world’s deadliest infectious disease, affecting around 9 million people worldwide in 2013. Of those, about 1.1 million died from the disease. The potential of cathelicin, a human AMP, in the treatment of mycobacteriosis and wound regeneration was assessed in pre-clinical trials. (...

    Iron Overload Favors the Elimination of Leishmania

    Get PDF
    Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host’s iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host’s oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs

    Delivery of antimicrobial peptides for the treatment of mycobacteriosis

    Get PDF
    Mycobacterium tuberculosis, which resides inside macrophages, has always been recognized as one of the most “successful” pathogens. Standard treatments have already been used for decades and, therefore, resistances to the first-line medicines are increasing. Additionally, poor patient compliance with stringent therapies is often pointed out as a major reason leading to treatment failure. Antimicrobial peptides (AMPs), a promising new class of broad spectrum antibiotics, are less prone to result in pathogen resistances due to their target (cellular membranes) and rapid action. In our laboratory we search for AMPs with potent activity against mycobacteria and try to develop efficient delivery systems based on self-assembled colloidal nanocarriers. Additionally, this systems are expected to reduce peptide toxicity and enhance selective uptake on infected cells. Finally, the use of encapsulated drugs in mycobacterial therapy may help reducing drug administration schedules which would ultimately improve patient compliance

    Delivery of nanogel formulations with antimicrobial peptides for the treatment of mycobacteriosis

    Get PDF
    Book of Abstracts of CEB Annual Meeting 2017[Excerpt] Mycobacterium tuberculosis is the human pathogen that causes Tuberculosis (TB). In 2015, 10.4 million TB cases and 1.8 million deaths were reported, placing this disease alongside HIV/AIDS as the deadliest infectious diseases. Current treatments rely in the administration of a cocktail of four first-line antibiotics during 6 months and, in the worst case scenario, a long-lasting treatment (24 months) with second-line drugs. The overuse or misuse of antimicrobial agents decreases the success of treatments and increases emergence of Multi-drug resistant (MDR) strains. Therefore, the development of new strategies for TB therapy is urgently needed. In this scope, antimicrobial peptides (AMPs) arise as promising candidates for TB treatment since they present high spectrum of antimicrobial activity, high efficacy at low concentrations and low propensity for bacterial resistance. Nevertheless, the low capacity of AMPs to reach the infected site and the use of high concentrations to overcome this problem limits its clinical application - this can be circumvented using a drug delivery system [1]. [...]info:eu-repo/semantics/publishedVersio

    Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment

    Get PDF
    uberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, recently joined HIV/AIDS on the top rank of deadliest infectious diseases. Low patient compliance due to the expensive, long-lasting and multi-drug standard therapies often results in treatment failure and emergence of multi-drug resistant strains. In this scope, antimicrobial peptides (AMPs) arise as promising candidates for TB treatment. Here we describe the ability of the exogenous AMP LLKKK18 to efficiently kill mycobacteria. The peptide's potential was boosted by loading into self-assembling Hyaluronic Acid (HA) nanogels. These provide increased stability, reduced cytotoxicity and degradability, while potentiating peptide targeting to main sites of infection. The nanogels were effectively internalized by macrophages and the peptide presence and co-localization with mycobacteria within host cells was confirmed. This resulted in a significant reduction of the mycobacterial load in macrophages infected in vitro with the opportunistic M. avium or the pathogenic M. tuberculosis, an effect accompanied by lowered pro-inflammatory cytokine levels (IL-6 and TNF-). Remarkably, intra-tracheal administration of peptide-loaded nanogels significantly reduced infection levels in mice infected with M. avium or M. tuberculosis, after just 5 or 10 every other day administrations. Considering the reported low probability of resistance acquisition, these findings suggest a great potential of LLKKK18-loaded nanogels for TB therapeutics.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/ BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER- 006684). The authors also acknowledge the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). The authors thank Dr. Hugo Osório (Proteomics Lab at I3S – Institute for Health Research and Innovation, Porto, Portugal) for the MALDI-ToF analysis. JPS acknowledges FCT for the financial support provided by grant SFRH/BPD/64958/2010

    Molecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy

    Get PDF
    Thymic atrophy has been described as a consequence of infection by several pathogens and shown to be induced through diverse mechanisms. Using the mouse model of Mycobacterium avium infection, we show in this study that the production of NO from IFN-γ–activated macrophages plays a major role in mycobacterial infection-induced thymic atrophy. Our results show that disseminated infection with a highly virulent strain of M. avium, but not with a low-virulence strain, led to a progressive thymic atrophy. Thymic involution was prevented in genetically manipulated mice unable to produce IFN-γ or the inducible NO synthase. In addition, mice with a selective impairment of IFN-γ signaling in macrophages were similarly protected from infection-induced thymic atrophy. A slight increase in the concentration of corticosterone was found in mice infected with the highly virulent strain, and thymocytes presented an increased susceptibility to dexamethasone-induced death during disseminated infection. The administration of an antagonist of glucocorticoid receptors partially reverted the infection-induced thymic atrophy. We observed a reduction in all thymocyte populations analyzed, including the earliest thymic precursors, suggesting a defect during thymic colonization by T cell precursors and/or during the differentiation of these cells in the bone marrow in addition to local demise of thymic cells. Our data suggest a complex picture underlying thymic atrophy during infection by M. avium with the participation of locally produced NO, endogenous corticosteroid activity, and reduced bone marrow seeding.Fundo Europeu de Desenvolvimento Regional - 011142 (reference PTDC/SAU-MII/099102/ 2008Fundação para a Ciência e a Tecnologia (FCT) - PTDC/SAU-MII/101663/2008National Institutes of Health - R01HL09176

    Mycobacteria-induced anaemia revisited : a molecular approach reveals the involvement of NRAMP1 and lipocalin-2, but not of hepcidin

    Get PDF
    Anaemia is a frequent complication of chronic infectious diseases but the exact mechanisms by which it develops remain to be clarified. In the present work, we used a mouse model of mycobacterial infection to study molecular alterations of iron metabolism induced by infection. We show that four weeks after infection with Mycobacterium avium BALB/c mice exhibited a moderate anaemia, which was not accompanied by an increase on hepatic hepcidin mRNA expression. Instead, infected mice presented increased mRNA expression of ferroportin (Slc40a1), ceruloplasmin (Cp), hemopexin (Hpx), heme-oxygenase-1 (Hmox1) and lipocalin-2 (Lcn2). Both the anaemia and the mRNA expression changes of iron-related genes were largely absent in C.D2 mice which bear a functional allele of the Nramp1 gene. Data presented in this work suggest that anaemia due to a chronic mycobacterial infection may develop in the absence of elevated hepcidin expression, is influenced by Nramp1 and may involve lipocalin-2.This work was supported by the EEC Framework 6 (LSHM-CT-2006037296 EuroIron1) and FCT-approved grant POCTI/MGI/40132/2001, funded by FEDER. Sandro Gomes was supported by FCT PhD grant SFRH/BD/29257/2006

    IL-10 underlies distinct susceptibility of BALB/c and C57BL/6 mice to Mycobacterium avium infection and influences efficacy of antibiotic therapy

    Get PDF
    Increased production of IL-10 has been frequently associated with augmented susceptibility to infection. However, the correlation between IL-10 activity and susceptibility to mycobacterial infection is still uncertain. Although studies using transgenic mice overexpressing IL-10 consistently showed an increased susceptibility to mycobacterial infection, experimental approaches in which IL-10 activity was reduced or abrogated originated inconclusive data. We show here that this controversy might be due to the mouse strains used in the various experimental procedures. Our results show that BALB/c mice are more susceptible than C57BL/6 to Mycobacterium avium infection. This increased susceptibility of BALB/c mice is, to a great extent, due to distinct activity of IL-10 between the two mouse strains. In accordance, reduction of IL-10 activity through the administration of anti-IL-10R mAb, or the absence of IL-10 as studied in IL-10 knockout mice, clearly decreased the susceptibility of BALB/c mice to M. avium but had a less obvious effect in C57BL/6 mice. Moreover, abrogation of IL-10 activity in infected BALB/c mice increased the efficacy of antimycobacterial therapy, whereas for the C57BL/6 mice it produced no effect. These observations show that the activity of IL-10 in response to the same mycobacterial stimulus influences not only the susceptibility to infection but also the efficacy of antimycobacterial therapy. This should now be considered in the context of human response to mycobacterial infection, particularly as a possible strategy to improve treatment against infections by mycobacteria

    Studies in the mouse model identify strain variability as a major determinant of disease outcome in Leishmania infantum infection

    Get PDF
    Visceral leishmaniasis is a severe and potentially fatal disease caused by protozoa of the genus Leishmania, transmitted by phlebotomine sandflies. In Europe and the Mediterranean region, L. infantum is the commonest agent of visceral leishmaniasis, causing a wide spectrum of clinical manifestations, including asymptomatic carriage, cutaneous lesions and severe visceral disease. Visceral leishmaniasis is more frequent in immunocompromised individuals and data obtained in experimental models of infection have highlighted the importance of the host immune response, namely the efficient activation of host's macrophages, in determining infection outcome. Conversely, few studies have addressed a possible contribution of parasite variability to this outcome.No funders or funding refered in the paper
    corecore