39 research outputs found

    A Seasonal and Age-Related Study of Interstitial Cells in the Pineal Gland of Male Viscacha (Lagostomus maximus maximus)

    Get PDF
    The pineal gland of viscacha exhibits histophysiological variations throughout the year, with periods of maximal activity in winter and minimal activity in summer. The aim of this work is to analyze the interstitial cells (IC) in the pineal gland of male viscachas in relation to season and age. The S-100 protein, glio-fibrillary acidic protein (GFAP), and vimentin were detected in adult and immature animals by immunohistochemistry (IHC). Double-IHC was also performed. The S-100 protein was localized within both, IC nucleus and cytoplasm. GFAP was present only in the cytoplasm. Vimentin was expressed in some IC, besides endothelial cells, and perivascular spaces. In the adult males, the morphometric parameters analyzed for the S-100 protein and GFAP exhibited seasonal variations with higher values of immunopositive area percentage in winter and lower values in summer, whereas the immature ones showed the lowest values for all the adult animals studied. Colocalization of S-100 protein and GFAP was observed. The IC exhibited differential expression for the proteins studied, supporting the hypothesis of the neuroectodermal origin. The IC generate an intraglandular communication network, suggesting its participation in the glandular activity regulation processes. The results of double-IHC might indicate the presence of IC in different functional stages, probably related to the needs of the cellular microenvironment. The morphometric variations in the proteins analyzed between immature and adult viscachas probed to be more salient in the latter, suggesting a direct relationship between the expression of the S-100 protein and GFAP, and animal age.Fil: Busolini, Fabricio Iván. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Rosales, Gabriela Judith. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Filippa, Veronica Palmira. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Mohamed, Fabian Heber. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Bioquímica y Ciencias Biológicas; Argentin

    Soluble CD44 Interacts with Intermediate Filament Protein Vimentin on Endothelial Cell Surface

    Get PDF
    CD44 is a cell surface glycoprotein that functions as hyaluronan receptor. Mouse and human serum contain substantial amounts of soluble CD44, generated either by shedding or alternative splicing. During inflammation and in cancer patients serum levels of soluble CD44 are significantly increased. Experimentally, soluble CD44 overexpression blocks cancer cell adhesion to HA. We have previously found that recombinant CD44 hyaluronan binding domain (CD44HABD) and its non-HA-binding mutant inhibited tumor xenograft growth, angiogenesis, and endothelial cell proliferation. These data suggested an additional target other than HA for CD44HABD. By using non-HA-binding CD44HABD Arg41Ala, Arg78Ser, and Tyr79Ser-triple mutant (CD443MUT) we have identified intermediate filament protein vimentin as a novel interaction partner of CD44. We found that vimentin is expressed on the cell surface of human umbilical vein endothelial cells (HUVEC). Endogenous CD44 and vimentin coprecipitate from HUVECs, and when overexpressed in vimentin-negative MCF-7 cells. By using deletion mutants, we found that CD44HABD and CD443MUT bind vimentin N-terminal head domain. CD443MUT binds vimentin in solution with a Kd in range of 12–37 nM, and immobilised vimentin with Kd of 74 nM. CD443MUT binds to HUVEC and recombinant vimentin displaces CD443MUT from its binding sites. CD44HABD and CD443MUT were internalized by wild-type endothelial cells, but not by lung endothelial cells isolated from vimentin knock-out mice. Together, these data suggest that vimentin provides a specific binding site for soluble CD44 on endothelial cells

    Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na+/K+-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes

    No full text
    Background: Beneficial effects of Resveratrol (RSV) have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min) in Ussing chambers (functional studies) and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs)). Results: RSV reduced alanine and glucose-induced short circuit currents (ΔIsc) and influenced forskolin-induced ΔIsc. The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1), AMP-activated protein kinase (AMPK), protein kinase A substrates (PKA-S) and liver kinase B1 (LKB1) increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1) and (phosphorylated) Na+/H+-exchanger 3 (NHE3) did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP) levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures

    Lovastatin Enhances Ecto-5′-Nucleotidase Activity and Cell Surface Expression in Endothelial Cells

    Full text link
    Extracellular adenosine production by the GPI-anchored Ecto-5′-Nucleotidase (Ecto-5′-Nu) plays an important role in the cardiovascular system, notably in defense against hypoxia. It has been previously suggested that HMG-CoA reductase inhibitors (HRIs) could potentiate the hypoxic stimulation of Ecto-5′Nu in myocardial ischemia. In order to elucidate the mechanism of Ecto-5′-Nu stimulation by HRIs, Ecto-5′-Nu activity and expression were determined in an aortic endothelial cell line (SVAREC) incubated with lovastatin. Lovastatin enhanced Ecto-5′-Nu activity in a dose-dependent manner. This increase was not supported by de novo synthesis of the enzyme because neither the mRNA content nor the total amount of the protein were modified by lovastatin. By contrast, lovastatin enhanced cell surface expression of Ecto-5′-Nu and decreased endocytosis of Ecto-5′-Nu, as evidenced by immunostaining. This effect appeared unrelated to modifications of cholesterol content or Ecto-5′-Nu association with detergent-resistant membranes. The effect of lovastatin was reversed by mevalonate, the substrate of HMG-CoA reductase, by its isoprenoid derivative, geranyl-geranyl pyrophosphate, and by cytotoxic necrotizing factor, an activator of Rho-GTPases. Stimulation of Ecto-5′-Nu by lovastatin enhanced the inhibition of platelet aggregation induced by endothelial cells. In conclusion, lovastatin enhances Ecto-5′-Nu activity and membrane expression in endothelial cells. This effect seems independent of lowering cholesterol content but could be supported by an inhibition of Ecto-5′-Nu endocytosis through a decrease of Rho-GTPases isoprenylation.</jats:p

    Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts

    Full text link
    It has been reported that vimentin, a cytoskeleton filament that is expressed only in mesenchymal cells after birth, is re-expressed in epithelial cells in vivo under pathological conditions and in vitro in primary culture. Whether vimentin re-expression is only a marker of cellular dedifferentiation or is instrumental in the maintenance of cell structure and/or function is a matter of debate. To address this issue, we used renal proximal tubular cells in primary culture from vimentin-null mice (Vim-/-) and from wild-type littermates (Vim+/+). The absence of vimentin did not affect cell morphology, proliferation and activity of hydrolases, but dramatically decreased Na-glucose cotransport activity. This phenotype was associated with a specific reduction of SGLT1 protein in the detergent-resistant membrane microdomains (DRM). In Vim+/+cells, disruption of these microdomains by methyl-β-cyclodextrin decreased SGLT1 protein abundance in DRM, a change that was paralleled by a decrease of Na-glucose transport activity. Importantly, we showed that vimentin is located to DRM, but it disappeared after methyl-β-cyclodextrin treatment. In Vim-/- cells,supplementation of cholesterol with cholesterol-methyl-β-cyclodextrin complexes completely restored Na-glucose transport activity. Interestingly,neither cholesterol content nor cholesterol metabolism changed in Vim-/- cells. Our results are consistent with the view that re-expression of vimentin in epithelial cells could be instrumental to maintain the physical state of rafts and, thus, the function of DRM-associated proteins.</jats:p
    corecore